» »

И значимых биологически активных веществ. Новости здоровья, медицины и долголетия

15.03.2020

Биологически активными называют органические вещества, способные изменять скорость обмена веществ в организме. Среди них есть и относительно простые органические молекулы (например, природные амины), и очень сложные высокомолекулярные соединения (например, белки, обладающие ферментативными свойствами).

К биологически активным относят ферменты, гормоны, витамины, антибиотики, феромоны, пестициды, биогенные стимуляторы и другие вещества. Их применяют для лечения людей и сельскохозяйственных животных, защиты растений, регуляции численности особей, например снижают численность насекомых, привлекая их половыми феромонами в ловушки, и т. п.

Биогенные стимуляторы образуются в организме при неблагоприятных условиях - при травме, облучении, воспалении.

Среди биологически активных веществ отдельную группу составляют фитонциды, убивающие микроорганизмы. Их открыл советский ученый Б. П. Токин. Фитонциды - вещества растительного происхождения. Активные фитонциды содержатся в луке и чесноке: пары и вытяжки из них убивают холерный вибрион, дифтерийную палочку, гноеродных микробов. Стоит пожевать несколько минут чеснок, как большинство бактерий, живущих в полости рта, погибают. По родовому латинскому названию чеснока - allium - его активное начало названо аллицином. Уснино-вая кислота - фитонцид из лишайника уснеи - угнетает туберкулезных бактерий.

Многие фитонциды выделяются из растений в газообразном состоянии. Листья смородины, грецкого ореха, дуба, ольхи, желтой акации выделяют гексенал, в очень малых концентрациях убивающий простейших.

Устойчивость картофеля и моркови к грибным заболеваниям определяется содержащимся в них фитонцидом - хлорогеновой кислотой. Болезнь «снежную плесень» на злаках, вызываемую грибом фузариумом, уничтожает фитонцид бензоксазолин, образующийся в тканях злаков при повреждениях.

Все биологически активные вещества, включая и фитонциды, относят к продуктам вторичного обмена, считая первичными в обмене белки, углеводы, жиры (см. Липиды). Однако роль этих веществ в организме не второстепенна: ведь именно от них зависит его выживание в экстремальных условиях и при взаимодействии с соседними видами.

Кроме того, для нас именно они часто определяют вкус растительной пищи, именно за ними мы обращаемся в зеленую аптеку природы.

Важную роль в жизни животных играют феромоны, которые вырабатываются специализированными железами или специальными клетками (см. Эндокринная система). Эти биологически активные вещества, выделяемые животными в окружающую среду, влияют на поведение, а иногда и на рост и развитие особей того же вида или даже других видов. Феромонами могут быть отдельные химические соединения, но чаще это совокупность нескольких веществ. У разных животных они, как правило, разные. К феромонам относятся половые аттрактанты - привлекающие вещества, способствующие встрече самца и самки; вещества тревоги, сбора и др. Особенно велико значение феромонов в жизни насекомых. У общественных насекомых они также регулируют состав колонии и специфическую деятельность ее членов.

Биологически активные вещества

К биологически активным веществам относятся ферменты, гормоны, антибиотики, витамины.

Ферменты (энзимы) – специфические белки, выполняющие в организме функции биологических катализаторов. Известно около 1000 ферментов, катализирующих соответствующее число индивидуальных реакций. Ферменты имеют высокую специфичность действия, интенсивность, действуют в «мягких» условиях (температура 30-35ºС, нормальное давление, рН~7). Процесс катализа строго ограничен в пространстве и времени. Часто, вещества, образующиеся под действием одного фермента, являются субстратом для другого фермента. Ферменты имеют все уровни белковой структуры (первичная, вторичная, третичная; четвертичная – особенно для регуляторных ферментов). Структурная часть молекулы, принимающая непосредственное участие в катализе наз. Каталитическим участком. Контактная площадка – место на поверхности фермента, к которому прикрепляется вещество. Каталитический центр и контактная площадка образуют активный центр (в молекуле их обычно несколько). Группы ферментов:

1. Не имеющие небелковых компонентов;

2. Имеющие белковый компонент – апофермент и требующие для проявления активности определенные органические вещества – коферменты.

Иногда в состав фермента входят различные ионы, в том числе и ионы металлов. Ионный компонент называется ионным кофактором. Ингибиторы – вещества угнетающие активность ферментов, образуют с ними инертные соединения. Такими веществами иногда являются сами субстраты или продукты реакции (в зависимости от концентрации). Изоферменты – генетически детерминированные формы фермента в одном и том же организме, характеризующиеся сходной субстратной спецификой.

Классификация ферментов

Ферменты классифицируются по типу реакции, которую они катализируют. Классы:

1. Оксидоредутазы – катализируют реакции окисления.

2. Трансферазы – перенос функциональных групп.

3. Гидролазы – гидролитический распад.

4. Лиазы – негидролитическое отщепление определенных групп атомовс образованием двойной связи.

5. Изомеразы – пространственная перестройка в пределах одной молекулы.

6. Лигазы – реакции синтеза, сопряженные с распадом догатых энергией связей.

Гормоны – химические вещества, обладающие чрезвычайно высокой биологической активностью, образованы специфической тканью (железами внутренней секреции). Гормоны контролируют обмен веществ, клеточную активность, проницаемость клеточных мембран, обеспечивают гомеостаз, др. специфические функции. Обладают дистантным действием (разносятся кровью во все ткани). Образование гормонов контролируется по принципу обратной связи: не только регулятор влияет на процесс, но и состояние процесса влияет на интенсивность образования регулятора.

Классификация гормонов

Есть несколько классификаций гормонов: связанная с происхождением гормона, с его химическим составом и др. По химической природе гормоны делятся на (химическая классификация):

1. Стероидные – производные стеролов с укороченными боковыми цепями.

Эстрон, эстрадиол, эстриол – яичники; вызывают образование женских вторичных половых признаков.

Кетоны и оксикетоны:

Тестостерон (XVI) – семенники; вызывает образование мужских вторичных половых признаков.

Кортизон, кортизол, кортикостерон (XVII), 11-дегидрокортикостерон,17-оксикортикостерон – кора надпочечников; регулируют обмен углеводов и белков.

11-дезоксикортикостерон, альдостерон – кора надпочечников; регулируют обмен электролитов воды.

2. Пептидные.

Циклические октапептиды.

Окситоцин, вазопрессин – гормоны задней доли гипофиза.

Полипептиды.

Интермедин, хроматотропин – гормоны промежуточной доли гипофиза; вызывает расширение меланофор в хроматофорах кожи.

Адренокортикотропный гормон – гормон передней доли гипофиза; стимулирует функцию коры надпочечников.

Инсулин – гормон поджелудочной железы; регулирует обмен углеводов.

Секретин – гормон слизистых желез кишечника; стимулирует выделение панкреатического сока.

Глюкагон – гормон островков Лангеранса поджелудочной железы; повышает концентрацию сахара в крови.

Белковые вещества

Лютеотропин – передняя доля гипофиза; поддерживает функцию желтого тела и лактацию.

Паратиреокрин – околощитовидная железа; поддерживает концентацию кальция и фосфора в крови.

Соматотропин – передняя доля гипофиза; стимулирует рост, регулирует анаболизм белков.

Ваготонин – поджелудочная железа; стимулирует парасимпатическую нервную систему.

Центропнеин – поджелудочная железа; стимулирует дыхание.

Гликопротеины

Фолликулостимулирующий (гонадотропный) гормон – передняя доля гипофиза; стимулирует рост фолликул, яичников и сперматогенез.

Лютеинизирующий гормон – передняя доля гипофиза; стимулирует образование эстрогенов и андрогенов.

Тиреотропин – передняя доля гипофиза; стимулирует деятельность щтовиной железы.

3. Родственные тирозину.

Фенилалкиламины

Адреналин (XVIII), норадреналин (медиатор нервного возбуждения) – гормоны мозгового слоя надпочечников; повышают кровяное давление, вызывают гликогенолиз, гипергликемию.

Иодированые тиронины.

Тироксин, 3,5,3-трииодотиронин – гормоны щитовидной железы; стимулируют основной обмен.

Антибиотики – вещества, образованные микроорганизмами или получаемые из других источников, обладающие антибактериальным, антивирусным, противоопухолевым действием. Выделено и описано св. 400 антибиотиков, которые принадлежат к различным классам химических соединений. Среди них есть пептиды, полиеновые соединения, полициклические вещества.

Для них характерно избирательное действие на определенные виды микроорганизмов; характеризуются специфическим антимикробным спектром действия. Подавляют некоторые болезнетворные микроорганизмы, не повреждая при этом растительных и животных тканей. Антибиотики действуют встраиваясь в обмен веществ.

Классификация антибиотиков

Есть несколько классификаций антибиотиков. По происхождению:

1. Грибкового происхождения

2. Бактериального происхождения

3. Животного происхождения

По спектру действия:

1. С узким спектром действия – действующие на грамположительные микробы(различные кокки). Это: пенициллин, стрептомицин.

2. С широким спектром действия – действующие как на грамположительные так и на грамотрицательные микроорганизмы(различные палочки). Это: тетракциклины, неомицин.

(Грамположительные и грамотрицательные антибиотики отличаются по отношению к определенным красителям. Грамположительные образуют с крастелем окрашенный комплекс, который не обесцвечивается с спирте; грамотрицательные не окрашиваются).

3. Действующие на грибки – группа полиеновых антибиотиков. Это: нистатин, кандицидин

4. Действующие как на микроорганизмы так и на опухолевые клетки животных. Это: актиномицины, митомицин…

По типу противомикробной активности:

1. Бактерицидные.

2. Бактериостатические.

Витамины – группа дополнительных веществ еды, которые не синтезируются в организме человека. Витамины являются биологическими катализаторами химических реакций или реагентами фотохимических процессов в организме. Участвуют в обмене веществ в составе ферментных систем. В организмы человека и животных попадают из внешней среды. Некоторые производные витаминов с замещенными функциональными группировками оказывают противоположное по сравнению с витаминами действие, и называются антивитаминами. Становятся витаминами. Провитамины – вещества, которые после ряда превращений в организме

Классификация витаминов

Классификация по отношению к человеческому организму:

1. Повышающие общую активность организма – регулируют функциональное состояние центральной нервной системы (B1, B2, PP, A, C).

2. Антигеморрагические – обеспечивающие нормальную проницаемость и эластичность кровеносных сосудов (C, P, K).

3. Антианемические – регулируют кроветворение (B12, Bc, C).

4. Антиинфекционные – повышающие устойчивость организма к инфекциям (C, A).

5. Регулирующие зрение – усиливающие остроту зрения.(A, B2, C).

Также различают:

1. Водорастворимые (витамины С, В1, В2, В6, В12, РР, пантотеновая кислота, биотин, мезоинозит, холин, п-аминбензойная кислота, фолиевая кислота).

2. Жирорастворимые (витамины А, А2, D2, D3, Е, К1, К2).

Витамин А (ретинол) – влияет на зрение, рост (V).

Витамин В1 (тиамин) – участвует в обмене углеводов (VI).

Витамин В2 (рибофлавин) – участвует в обмене углеродов, жиров, белков; влияет на рост, зрение, центральную нервную систему (VII).

Витамин РР (никотиновая кислота) –участвует в клеточном дыхании (VIII).

Витамин В6 (пиридоксин)– участвует в усвоении белков, жиров; азотистый обмен (IX).

Витамин В9 (фолиевая кислота) – участвует в обмене веществ, синтезе нуклеиновых кислот, кроветворении (X).

Витамин В12 (цианокобаламин) – участвует в кроветворении (XI).

Витамин С (аскорбиновая кислота) – участвует в усвоении белков, восстановлении тканей (XII).

Витамин D (кальциферол) – участвует в обмене минеральных веществ (XIII).

Витамин Е (токоферол) – мышцы (XIV).

Витамин К (филлохиноны) – влияет на сворачиваемость крови (XV).

доктор биологических наук, профессор В. М. Шкуматов ;

заместитель генерального директора по вопросам

инновационного развития РУП «Белмедпрепараты»

кандидат технических наук Т. В. Трухачева

Леонтьев, В. Н.

Химия биологически активных веществ: электронный курс текстов лекций для студентов специальности 1-48 02 01 «Биотехнология» очной и заочной форм обучения / В. Н. Леонтьев, О. С. Игнатовец. – Минск: БГТУ, 2013. – 129 с.

Электронный курс текстов лекций посвящен структурно-функциональным особенностям и химическим свойствам основных классов биологически активных веществ (белков, углеводов, липидов, витаминов, антибиотиков и др.). Описаны методы химического синтеза и структурного анализа перечисленных классов соединений, их свойства и воздействие на биологические системы, а также распространение в природе.


Тема 1. Введение

4

Тема 2. Белки и пептиды. Первичная структура белков и пептидов

Тема 3. Структурная организация белков и пептидов. Методы выделения

Тема 4. Химический синтез и химическая модификация белков и пептидов

Тема 5. Ферменты

45

Тема 6. Некоторые биологически важные белки

68

Тема 7. Структура нуклеиновых кислот

76

Тема 8. Строение углеводов и углеводсодержащих биополимеров

Тема 9. Структура, свойства и химический синтез липидов

104

Тема 10. Стероиды

117

Тема 11. Витамины

120

Тема 12. Введение в фармакологию. Фармакокинетика

134

Тема 13. Противомалярийные препараты

137

Тема 14. Средства, влияющие на центральную нервную систему

Тема 15. Сульфаниламидные препараты

144

Тема 16. Антибиотики

146

Список литературы

157

Тема 1. Введение
Химия биологически активных веществ изучает строение и биологические функции важнейших компонентов живой материи, в первую очередь биополимеров и низкомолекулярных биорегуляторов, уделяя осное внимание выяснению закономерностей взаимосвязи между структурой и биологическим действием. По существу, она является химическим фундаментом современной биологии. Разрабатывая основополагающие проблемы химии живого мира, биоорганическая химия способствует решению задач получения практически важных препаратов для медицины, сельского хозяйства, ряда отраслей промышленности.

Объекты изучения: белки и пептиды, нуклеиновые кислоты, углеводы, липиды, биополимеры смешанного типа – гликопротеины, нуклеопротеины, липопротеины, гликолипиды и т. п.; алкалоиды, терпеноиды, витамины, антибиотики, гормоны, простагландины, ростовые вещества, феромоны, токсины, а также синтетические лекарственные препараты, пестициды и др.

Методы исследования: основной арсенал составляют методы органической химии, однако для решения структурно-функциональных задач привлекаются и разнообразные физические, физико-химические, математические и биологические методы.

Основные задачи: выделение в индивидуальном состоянии изучаемых соединений с помощью кристаллизации, перегонки, различных видов хроматографии, электрофореза, ультрафильтрации, ультрацентрифугирования, противоточного распределения и т. п.; установление структуры, включая пространственное строение, на основе подходов органической и физико-органической химии с применением масс-спектрометрии , различных видов оптической спектроскопии (ИК, УФ, лазерной и др.), рентгеноструктурного анализа, ядерного магнитного резонанса, электронного парамагнитного резонанса, дисперсии оптического вращения и кругового дихроизма, методов быстрой кинетики и т. п. в сочетании с расчетами на ЭВМ; химический синтез и химическая модификация изучаемых соединений, включая полный синтез, синтез аналогов и производных, – с целью подтверждения структуры, выяснения связи строения и биологической функции, получения практически ценных препаратов; биологическое тестирование полученных соединений in vitro и in vivo .

Наиболее часто встречающиеся в биомолекулах функциональные группы:


гидроксильная (спирты)


аминогруппа (амины)


альдегидная (альдегиды)


амидная (амиды)


карбонильная (кетоны)


сложно-эфирная


карбоксильная (кислоты)


эфирная


сульфгидрильная (тиолы)


метильная


дисульфидная


этильная


фосфатная


фенильная


гуанидиновая


имидазольная

Тема 2. Белки и пептиды . Первичная структура белков и пептидов
Белки – высокомолекулярные биополимеры, построенные из остатков аминокислот. Молекулярная масса белков колеблется в пределах от 6 000 до 2 000 000 Да. Именно белки являются продуктом генетической информации, передаваемой из поколения в поколение, и осуществляют все процессы жизнедеятельности в клетке. Этим удивительным по разнообразию полимерам присущи одни из наиболее важных и разносторонних клеточных функций.

Белки можно разделить:
1) по строению : простые белки построены из остатков аминокислот и при гидролизе распадаются, соответственно, только на свободные аминокислоты или их производные.

Сложные белки – это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, образуются небелковая часть или продукты ее распада. В их состав могут входить ионы металлов (металлопротеины), молекулы пигментов (хромопротеины), они могут образовывать комплексы с другими молекулами (липо-, нуклео-, гликопротеины), а также ковалентно связывать неорганический фосфат (фосфопротеины);

2. растворимости в воде :

– водорастворимые,

– солерастворимые,

– спирторастворимые,

– нерастворимые;

3. выполняемым функциям : к биологическим функциям белков относятся:

– каталитическая (ферментативная),

– регуляторная (способность регулировать скорость химических реакций в клетке и уровень метаболизма в целом организме),

– транспортная (транспорт веществ в организме и перенос их через биомембраны),

– структурная (в составе хромосом, цитоскелета, соединительных, мышечных, опорных тканей),

– рецепторная (взаимодействие рецепторных молекул с внеклеточными компонентами и инициирование специфического клеточного ответа).

Кроме этого, белки выполняют защитные, запасные, токсические, сократительные и другие функции;

4) в зависимости от пространственной структуры:

– фибриллярные (они используются природой как структурный материал),

– глобулярные (ферменты, антитела, некоторые гормоны и др.).

АМИНОКИСЛОТЫ, ИХ СВОЙСТВА
Аминокислотами называются карбоновые кислоты, содержащие аминогруппу и карбоксильную группу. Природные аминокислоты являются 2-аминокарбоновыми кислотами, или α-аминокислотами, хотя существуют такие аминокислоты, как β-аланин, таурин, γ-аминомасляная кислота. В общем случае формула α-аминокислоты выглядит так:


У α-аминокислот при 2-м атоме углерода имеются четыре разных заместителя, т. е. все α-аминокислоты, кроме глицина, имеют асимметрический (хиральный) атом углерода и существуют в виде двух энантиомеров – L - и D -аминокислот. Природные аминокислоты относятся к L -ряду. D -аминокислоты встречаются в бактериях и пептидных антибиотиках.

Все аминокислоты в водных растворах могут существовать в виде биполярных ионов, причем их суммарный заряд зависит от рН среды. Величина рН, при которой суммарный заряд равен нулю, называется изоэлектрической точкой . В изоэлектрической точке аминокислота является цвиттер-ионом , т. е. аминная группа у нее протонирована, а карбоксильная – диссоциирована. В нейтральной области рН большинство аминокислот являются цвиттер-ионами:


Аминокислоты не поглощают свет в видимой области спектра, ароматические аминокислоты поглощают свет в УФ области спектра: триптофан и тирозин при 280 нм, фенилаланин при 260 нм.

Белки дают ряд цветных реакций, обусловленных наличием определенных аминокислотных остатков или общих химических группировок. Эти реакции широко используются для аналитических целей. Среди них наиболее известны нингидриновая реакция, позволяющая проводить количественное определение аминогрупп в белках, пептидах и аминокислотах, а также биуретовая реакция, применяемая для качественного и количественного определения белков и пептидов. При нагревании белка или пептида, но не аминокислоты, с CuSO 4 в щелочном растворе образуется окрашенное в фиолетовый цвет комплексное соединение меди, количество которого можно определить спектрофотометрически. Цветные реакции на отдельные аминокислоты используются для обнаружения пептидов, содержащих соответствующие аминокислотные остатки. Для идентификации гуанидиновой группы аргинина применяется реакция Сакагучи – при взаимодействии с а-нафтолом и гипохлоритом натрия гуанидины в щелочной среде дают красное окрашивание. Индольное кольцо триптофана может быть обнаружено реакцией Эрлиха – красно-фиолетовое окрашивание при реакции с п-диметиламино-бензальдегидом в H 2 SO 4 . Реакция Паули позволяет выявить остатки гистидина и тирозина, которые в щелочных растворах реагируют с диазобензол-сульфокислотой, образуя производные, окрашенные в красный цвет.

Биологическая роль аминокислот:

1) структурные элементы пептидов и белков, так называемые протеиногенные аминокислоты. В состав белков входят 20 аминокислот, которые кодируются генетическим кодом и включаются в белки в процессе трансляции, некоторые из них могут быть фосфорилированы, ацилированы или гидроксилированы;

2) структурные элементы других природных соединений – коферментов, желчных кислот, антибиотиков;

3) сигнальные молекулы. Некоторые из аминокислот являются нейромедиаторами или предшественниками нейромедиаторов, гормонов и гистогормонов;

4) важнейшие метаболиты, например, некоторые аминокислоты являются предшественниками алкалоидов растений, или служат донорами азота, или являются жизненно важными компонентами питания.

Номенклатура, молекулярная масса и значения pK аминокислот приведены в таблице 1.

Таблица 1
Номенклатура, молекулярная масса и значения pK аминокислот


Аминокислота

Обозначение

Молеку-лярная

масса


pK 1

(−СООН)


pK 2

(−NH3+)


pK R

(R -группы)


Глицин

Gly G

75

2,34

9,60



Аланин

Ala A

89

2,34

9,69



Валин

Val V

117

2,32

9,62



Лейцин

Leu L

131

2,36

9,60



Изолейцин

Ile I

131

2,36

9,68



Пролин

Pro P

115

1,99

10,96



Фенилаланин

Phe F

165

1,83

9,13



Тирозин

Tyr Y

181

2,20

9,11

10,07

Триптофан

Trp W

204

2,38

9,39



Серин

Ser S

105

2,21

9,15

13,60

Треонин

Thr T

119

2,11

9,62

13,60

Цистеин

Cys C

121

1,96

10,78

10,28

Метионин

Met M

149

2,28

9,21



Аспарагин

Asn N

132

2,02

8,80



Глутамин

Gln Q

146

2,17

9,13



Аспартат

Asp D

133

1,88

9,60

3,65

Глутамат

Glu E

147

2,19

9,67

4,25

Лизин

Lys K

146

2,18

8,95

10,53

Аргинин

Arg R

174

2,17

9,04

12,48

Гистидин

His H

155

1,82

9,17

6,00

Аминокислоты различаются по растворимости в воде. Это связано с их цвиттерионным характером, а также со способностью радикалов взаимодействовать с водой (гидратироваться). К гидрофильным относятся радикалы, содержащие катионные, анионные и полярные незаряженные функциональные группы. К гидрофобным – радикалы, содержащие алкильные или арильные группы.

В зависимости от полярности R -групп выделяют четыре класса аминокислот: неполярные, полярные незаряженные, отрицательно заряженные и положительно заряженные.

К неполярным аминокислотам относятся: глицин; аминокислоты с алкильными и арильными боковыми цепями – аланин, валин, лейцин, изолейцин; тирозин, триптофан, фенилаланин; иминокислота – пролин. Они стремятся попасть в гидрофобное окружение «внутри» молекулы белка (рис.1).

Рис. 1. Неполярные аминокислоты
К полярным заряженным аминокислотам относятся: положительно заряженные аминокислоты – гистидин, лизин, аргинин (рис. 2); отрицательно заряженные аминокислоты – аспарагиновая и глутаминовая кислота (рис. 3). Они обычно выступают наружу, в водное окружение белка.

Остальные аминокислоты образуют категорию полярных незаряженных: серин и треонин (аминокислоты-спирты); аспарагин и глутамин (амиды аспарагиновой и глутаминовой кислот); цистеин и метионин (серосодержащие аминокислоты).

Поскольку при нейтральном значении рН СООН-группы глутаминовой и аспарагиновой кислот полностью диссоциированы, их принято называть глутаматом и аспартатом независимо от природы присутствующих в среде катионов.

В ряде белков содержатся особые аминокислоты, образующиеся путем модификации обычных аминокислот после их включения в полипептидную цепь, например, 4-гидроксипролин, фосфосерин, -карбоксиглутаминовая кислота и др.

Рис. 2. Аминокислоты с заряженными боковыми группами
Все аминокислоты, образующиеся при гидролизе белков в достаточно мягких условиях, обнаруживают оптическую активность, т. е. способность вращать плоскость поляризованного света (за исключением глицина).

Рис. 3. Аминокислоты с заряженными боковыми группами
Оптической активностью обладают все соединения, способные существовать в двух стереоизомерных формах L- и D-изомеры (рис. 4). В состав белков входят только L -аминокислоты.

L -аланин D -аланин
Рис. 4. Оптические изомеры аланина

Глицин не имеет асимметрического атома углерода, а треонин и изолейцин содержат по два асимметрических атома углерода. Все остальные аминокислоты имеют один асимметрический атом углерода.

Оптически неактивная форма аминокислоты называется рацематом, представляющим собой эквимолярную смесь D - и L -изомеров, и обозначается символом DL -.

М

ономеры аминокислот, входящих в состав полипептидов, называются аминокислотными остатками. Остатки аминокислот соединяются друг с другом пептидной связью (рис. 5), в формировании которой принимает участие -карбоксильная группа одной аминокислоты и α-аминогруппа другой.
Рис. 5. Образование пептидной связи
Равновесие этой реакции сдвинуто в сторону образования свободных аминокислот, а не пептида. Поэтому биосинтез полипептидов требует катализа и затрат энергии.

Поскольку дипептид содержит реакционноспособные карбоксильную и аминогруппу, то к нему с помощью новых пептидных связей могут присоединяться другие аминокислотные остатки, в результате образуется полипептид – белок.

Полипептидная цепь состоит из регулярно повторяющихся участков – групп NHCHRCO, образующих основную цепь (скелет или остов молекулы), и вариабельной части, включающей характерные боковые цепи. R -группы аминокислотных остатков выступают из пептидного остова и формируют в значительной степени поверхность полимера, определяя многие физические и химические свойства белков. Свободное вращение в пептидном остове возможно между атомом азота пептидной группы и соседним -углеродным атомом, а также между -углеродным атомом и углеродом карбонильной группы. Благодаря этому линейная структура может приобретать более сложную пространственную конформацию.

Аминокислотный остаток, имеющий свободную -аминогруппу, называется N -концевым, а имеющий свободную -карбоксильную группу – С -концевым.

Структуру пептидов принято изображать с N -конца.

Иногда концевые -амино- и -карбоксильная группы связываются одна с другой, образуя циклические пептиды.

Пептиды различаются количеством аминокислот, аминокислотным составом и порядком соединения аминокислот.

Пептидные связи очень прочные, и для их химического гидролиза требуются жесткие условия: высокие температура и давление, кислая среда и длительное время.

В живой клетке пептидные связи могут разрываться с помощью протеолитических ферментов, называемых протеазами , или пептидгидролазами.

Так же, как и аминокислоты, белки являются амфотерными соединениями и в водных растворах заряжены. Для каждого белка существует своя изоэлектрическая точка – значение рН, при котором положительные и отрицательные заряды белка полностью скомпенсированы и суммарный заряд молекулы равен нулю. При значениях рН выше изоэлектрической точки белок несет отрицательный заряд, а при значениях рН ниже изоэлектрической точки – положительный.
СЕКВЕНАТОРЫ. СТРАТЕГИЯ И ТАКТИКА АНАЛИЗА ПЕРВИЧНОЙ СТРУКТУРЫ
Определение первичной структуры белков сводится к выяснению порядка расположения аминокислот в полипептидной цепочке. Эту задачу решают с помощью метода секвенирования (от англ. sequence –последовательность).

Принципиально первичную структуру белков можно определять путем непосредственного анализа аминокислотной последовательности или путем расшифровки нуклеотидной последовательности соответствующих генов с помощью генетического кода. Естественно, наибольшую надежность обеспечивает сочетание этих методов.

Собственно секвенирование на его сегодняшнем уровне позволяет определить аминокислотную последовательность в полипептидах, размер которых не превышает несколько десятков аминокислотных остатков. В то же время исследуемые полипептидные фрагменты значительно короче тех природных белков, с которыми приходится иметь дело. Поэтому необходимо предварительное разрезание исходного полипептида на короткие фрагменты. После секвенирования полученных фрагментов их необходимо снова сшить в первоначальной последовательности.

Таким образом, определение первичной последовательности белка сводится к следующим основным этапам:

1) расщепление белка на несколько фрагментов длиной, доступной для секвенирования;

2) секвенирование каждого из полученных фрагментов;

3) сборка полной структуры белка из установленных структур его фрагментов.

Исследование первичной структуры белка состоит из следующих стадий:

– определение его молекулярной массы;

– определение удельного аминокислотного состава (АК-состава);

– определение N - и С -концевых аминокислотных остатков;

– расщепление полипептидной цепи на фрагменты;

– расщепление исходной полипептидной цепи еще одним способом;

– разделение полученных фрагментов;

– аминокислотный анализ каждого фрагмента;

– установление первичной структуры полипептида с учетом перекрывающихся последовательностей фрагментов обоих расщеплений.

Поскольку пока не существует метода, позволяющего установить полную первичную структуру белка на целой молекуле, полипептидную цепь подвергают специфичному расщеплению химическими реагентами или протеолитическими ферментами. Смесь образовавшихся пептидных фрагментов разделяют и для каждого из них определяют аминокислотный состав и аминокислотную последовательность. После того как структура всех фрагментов установлена, необходимо выяснить порядок их расположения в исходной полипептидной цепи. Для этого белок подвергают расщеплению при помощи другого агента и получают второй, отличный от первого набор пептидных фрагментов, которые разделяют и анализируют аналогичным образом.

1. Определение молекулярной массы (нижеперечисленные методы подробно рассмотрены в теме 3):

– по вязкости;

– по скорости седиментации (метод ультрацентрифугирования);

– гельхроматография;

– электрофорез в ПААГ в диссоциирующих условиях.

2. Определение АК-состава. Анализ аминокислотного состава включает полный кислотный гидролиз исследуемого белка или пептида с помощью 6 н. соляной кислоты и количественное определение всех аминокислот в гидролизате. Гидролиз образца проводится в запаянных ампулах в вакууме при 150°С в течение 6 ч. Количественное определение аминокислот в гидролизате белка или пептида проводится с помощью аминокислотного анализатора.

3. Определение N- и С-аминокислотных остатков. В полипептидной цепи белка с одной стороны расположен аминокислотный остаток, несущий свободную α-аминогруппу (амино- или N -концевой остаток), а с другой – остаток со свободной α-карбоксильной группой (карбоксильный, или С -концевой остаток). Анализ концевых остатков играет важную роль в процессе определения аминокислотной последовательности белка. На первом этапе исследования он дает возможность оценить число полипептидных цепей, составляющих молекулу белка, и степень гомогенности исследуемого препарата. На последующих этапах с помощью анализа N -концевых аминокислотных остатков осуществляется контроль за процессом разделения пептидных фрагментов.

Реакции определения N-концевых аминокислотных остатков:

1) один из первых методов определения N -концевых аминокислотных остатков был предложен Ф. Сенгером в 1945 г. При реакции α- аминогруппы пептида или белка с 2,4-динитрофторбензолом получается динитрофенильное (ДНФ) производное, окрашенное в желтый цвет. Последующий кислотный гидролиз (5,7 н. НСl) приводит к разрыву пептидных связей и образованию ДНФ-производного N -концевой аминокислоты. ДНФ-аминокислота экстрагируется эфиром и идентифицируется хроматографическим методом в присутствии стандартов.

2) метод дансилирования. Наибольшее применение для определения N -концевых остатков в настоящее время находит разработанный в 1963 г. В. Греем и Б. Хартли дансильный метод. Как и метод динитрофенилирования, основан на введении в аминогруппы белка «метки», не удаляющейся при последующем гидролизе. Его первая стадия – реакция дансилхлорида (1-диметиламинонафталин-5-сульфохлорида) с непротонированной а-амино-группой пептида или белка с образованием дансилпептида (ДНС-пептида). На следующей стадии ДНС-пептид гидролизуется (5,7 н. НС1, 105°С, 12 - 16 ч) и освобождается N -концевая α-ДНС-аминокислота. ДНС-аминокислоты обладают интенсивной флуоресценцией в ультрафиолетовой области спектра (365 нм); обычно для их идентификации достаточно 0,1 - 0,5 нмоль вещества.

Имеется ряд методов, с помощью которых можно определять как N -концевой аминокислотный остаток, так и аминокислотную последовательность. К ним относятся деградация по методу Эдмана и ферментативный гидролиз аминопептидазами. Эти методы будут подробно рассмотрены ниже при описании аминокислотной последовательности пептидов.

Реакции определения С-концевых аминокислотных остатков:

1) среди химических методов определения С -концевых аминокислотных остатков заслуживают внимания метод гидразинолиза, предложенный С. Акабори, и оксазолоновый. В первом из них при нагревании пептида или белка с безводным гидразином при 100 - 120°С пептидные связи гидролизуются с образованием гидразидов аминокислот. С -концевая аминокислота остается в виде свободной аминокислоты и может быть выделена из реакционной смеси и идентифицирована (рис. 6).

Рис. 6. Расщепление пептидной связи гидразином
Метод имеет ряд ограничений. При гидразинолизе разрушаются глутамин, аспарагин, цистеин и цистин; аргинин теряет гуанидиновую группировку с образованием орнитина. Гидразиды серина, треонина и глицина лабильны и легко превращаются в свободные аминокислоты, что затрудняет интерпретацию результатов;

2) оксазолоновый метод, часто называемый методом тритиевой метки, основан на способности С -концевого аминокислотного остатка под действием уксусного ангидрида подвергаться циклизации с образованием оксазолона. В щелочных условиях резко увеличивается подвижность атомов водорода в положении 4 оксазолонового кольца и они могут быть легко заменена тритием. Образующиеся в результате последующего кислотного гидролиза тритиированного пептида или белка продукты реакции содержат радиоактивно меченную С -концевую аминокислоту. Хроматографирование гидролизата и измерение радиоактивности позволяют идентифицировать С -концевую аминокислоту пептида или белка;

3) чаще всего для определения С -концевых аминокислотных остатков используют ферментативный гидролиз карбоксипептидазами, позволяющий анализировать также и С-концевую аминокислотную последовательность. Карбоксипептидаза гидролизует только те пептидные связи, которые образованы С -концевой аминокислотой, имеющей свободную α-карбоксильную группу. Поэтому под действием этого фермента от пептида последовательно отщепляются аминокислоты, начиная с С -концевой. Это позволяет определить взаимное расположение чередующихся аминокислотных остатков.

В результате идентификации N - и С -концевых остатков полипептида получают две важных реперных точки для определения его аминокислотной последовательности (первичной структуры).

4. Фрагментация полипептидной цепи.

Ферментативные методы. Для специфического расщепления белков по определенным точкам применяются как ферментативные, так и химические методы. Из ферментов, катализирующих гидролиз белков по определенным точкам, наиболее широко используют трипсин и химотрипсин. Трипсин катализирует гидролиз пептидных связей, расположенных после остатков лизина и аргинина. Химотрипсин преимущественно расщепляет белки после остатков ароматических аминокислот – фенилаланина, тирозина и триптофана. При необходимости специфичность трипсина может быть повышена или изменена. Например, обработка цитраконовым ангидридом исследуемого белка приводит к ацилированию остатков лизина. В таком модифицированном белке расщепление будет проходить только по остаткам аргинина. Также при исследовании первичной структуры белков широкое применение находит протеиназа, которая также относится к классу сериновых протеиназ. Фермент имеет два максимума протеолитической активности при рН 4,0 и 7,8. Протеиназа с высоким выходом расщепляет пептидные связи, образованные карбоксильной группой глутаминовой кислоты.

В распоряжении исследователей имеется также большой набор менее специфичных протеолитических ферментов (пепсин, эластаза, субтилизин, папаин, проназа и др.). Эти ферменты используются в основном при дополнительной фрагментации пептидов. Их субстратная специфичность определяется природой аминокислотных остатков , не только образующих гидролизуемую связь, но и более удаленных по цепи.

Химические методы.

1) среди химических методов фрагментации белков наиболее специфичным и чаще всего применяемым является расщепление бромцианом по остаткам метионина (рис 7).

Реакция с бромцианом проходит с образованием промежуточного циансульфониевого производного метионина, спонтанно превращающегося в кислых условиях в иминолактон гомосерина, который, в свою очередь, быстро гидролизуется с разрывом иминной связи. Получающийся на С -конце пептидов лактон гомосерина далее частично гидролизуется до гомосерина (HSer), в результате чего каждый пептидный фрагмент, за исключением С -концевого, существует в двух формах – гомосериновой и гомосеринлактоновой;

Рис. 7. Расщепление полипептидной цепи бромцианом
2) большое число методов предложено для расщепления белка по карбонильной группе остатка триптофана. Одним из используемых для этой цели реагентов является N -бромсукцинимид;

3) реакция тиолдисульфидного обмена. В качестве реагентов используют восстановленный глутатион, 2-меркаптоэтанол, дитиотреитол.

5. Определение последовательности пептидных фрагментов. На этой стадии устанавливается аминокислотная последовательность в каждом из пептидных фрагментов, полученных на предыдущей стадии. Для этой цели обычно используют химический метод, разработанный Пером Эдманом. Расщепление по Эдману сводится к тому, что метится и отщепляется только N -концевой остаток пептида, а все остальные пептидные связи не затрагиваются. После идентификации отщепленного N -концевого остатка метка вводится в следующий, ставший теперь N -концевым, остаток, который точно так же отщепляется, проходя через ту же серию реакций. Так, отщепляя остаток за остатком, можно определить всю аминокислотную последовательность пептида, используя для этой цели всего одну пробу. В методе Эдмана вначале пептид взаимодействует с фенилизотиоционатом, который присоединяется к свободной α-аминогруппе N -концевого остатка. Обработка пептида холодной разбовленной кислотой приводит к отщеплению N -концевого остатка в виде фенилтиогидантоинового производного, которое можно идентифицировать хроматографическими методами. Остальная часть пептидной цени после удаления N -концевого остатка оказывается неповрежденной. Операция повторяется столько раз, сколько остатков содержит пептид. Таким способом можно легко определить аминокислотную последовательность пептидов, содержащих 10 - 20 аминокислотных остатков. Определение аминокислотной последовательности проводится для всех фрагментов, образовавшихся при расщеплении. После этого возникает следующая проблема – определить, в каком порядке располагались фрагменты в первоначальной полипептидной цепи.

Автоматическое определение аминокислотной последовательности . Крупным достижением в области структурных исследований белков явилось создание в 1967 г. П. Эдманом и Дж. Бэггом секвенатора – прибора, который с высокой эффективностью осуществляет последовательное автоматическое отщепление N -концевых аминокислотных остатков по методу Эдмана. В современных секвенаторах реализованы различные методы определения аминокислотной последовательности.

6. Расщепление исходной полипептидной цепи еще одним способом. Чтобы установить порядок расположения образовавшихся пептидных фрагментов, берут новую порцию препарата исходного полипептида и расщепляют его на более мелкие фрагменты каким-либо другим способом, при помощи которого расщепляются пептидные связи, устойчивые к действию предыдущего реагента. Каждый из полученных коротких пептидов подвергается последовательному расщеплению по методу Эдмана (так же, как на предыдущей стадии), и таким путем устанавливают их аминокислотную последовательность.

7. Установление первичной структуры полипептида с учетом перекрывающихся последовательностей фрагментов обоих расщеплений. Аминокислотные последовательности в пептидных фрагментах, полученных двумя способами, сравнивают, чтобы во втором наборе найти пептиды, в которых последовательности отдельных участков совпадали бы с последовательностями тех или иных участков пептидов первого набора. Пептиды из второго набора с перекрывающимися участками позволяют соединить в правильном порядке пептидные фрагменты, полученные в результате первого расщепления исходной полипептидной цепи.

Иногда второго расщепления полипептида на фрагменты оказывается недостаточно, для того чтобы найти перекрывающиеся участки для всех пептидов, полученных после первого расщепления. В этом случае применяется третий, а иногда и четвертый способ расщепления, чтобы получить набор пептидов, обеспечивающих полное перекрывание всех участков и установление полной последовательности аминокислот в исходной полипептидной цепи.

Слово «бады» в последнее время становится у некоторых врачей чуть ли не ругательным. Между тем биологически активные добавки вовсе не являются бесполезными и могут приносить ощутимую пользу. Пренебрежительное же отношение к ним и потеря доверия у людей связаны с тем, что на гребне увлечения биологически активными веществами появилось много фальсификаций. Так как наш сайт часто рассказывает о профилактических мерах, помогающих сохранить здоровье, стоит коснуться этого вопроса подробнее - что же относится к биологически активным веществам и где их искать.

Что такое биологически активные вещества?

Под биологически активными веществами подразумевают вещества, которые обладают высокой физиологической активностью и воздействуют на организм в самых малых дозах. Они могут ускорять обменные процессы, улучшать метаболизм, участвовать в синтезе витаминов, способствовать регулировке правильной работы систем организма.

БАВы могут играть различные роли. Ряд подобных веществ при детальном изучении показал свою способность подавлять рост раковых опухолей. Другие вещества, такие как аскорбиновая кислота, участвуют в огромном количестве процессов, протекающих в организме, и способствуют укреплению иммунитета.

БАДы, или биологически активные добавки, представляют собой препараты на основе повышенной концентрации определенных биологически активных веществ. Они не считаются лекарством, но при этом могут успешно лечить заболевания, связанные с нарушением баланса веществ в организме.

Как правило, БАВы содержатся в растениях и животных продуктах, поэтому многие препараты сделаны на их основе.

Виды биологически активных веществ

Лечебное действие фитотерапии и различных биологически активных добавок объясняется комбинацией содержащихся активных веществ. Какие же вещества относятся современной медициной к биологически активным? Это всем известные витамины, жирные кислоты, микро- и макроэлементы, органические кислоты, гликозиды, алкалоиды, фитонциды, ферменты, аминокислоты и ряд других. О роли микроэлементов мы уже писали в статье , теперь более конкретно поговорим о других биологически активных веществах.

Аминокислоты

Из курса школьной биологии мы знаем, что аминокислоты входят в состав белков, ферментов, многих витаминов и других органических соединений. В человеческом организме синтезируется 12 из 20 необходимых аминокислот, то есть существует ряд незаменимых аминокислот, которые мы можем получить лишь с пищей.

Аминокислоты служат для синтеза белков, из которых в свою очередь формируются железы, мышцы, сухожилия, волосы - словом, все части организма. Без определенных аминокислот невозможно нормальное функционирование головного мозга, так как именно аминокислота позволяет передавать нервные импульсы от одной нервной клетки к другой. Кроме того, аминокислоты регулируют энергетический обмен и способствуют тому, чтобы витамины и микроэлементы усваивались и работали в полной мере.

К наиболее важным аминокислотам относятся триптофан, метионин и лизин, которые как раз не синтезируются человеком и должны поступать с пищей. Если их не хватает, то нужно принимать их в составе БАД.

Триптофан содержится в мясе, бананах, овсе, финиках, кунжуте, арахисе; метионин - в рыбе, молочных продуктах, яйцах; лизин - в мясе, рыбе, молочных продуктах, пшенице.

Если не хватает аминокислот, организм пытается извлечь их сначала из собственных тканей. А это ведет к их повреждению. В первую очередь организм извлекает аминокислоты из мышц - для него важнее прокормить мозг, чем бицепсы. Отсюда первым симптомом нехватки незаменимых аминокислот являются слабость, быстрая утомляемость, истощение, затем к этому присоединяются анемия, потеря аппетита и ухудшение состояния кожи.

Очень опасна нехватка незаменимых аминокислот в детстве - это может привести к задержке роста и психического развития.

Углеводы

Про углеводы все наслышаны из глянцевых журналов - худеющие дамы считают их своим врагом номер один. Между тем углеводы играют важнейшую роль в построении тканей тела и их нехватка ведет к печальным последствиям - низкоуглеводные диеты это демонстрируют постоянно.

К углеводам относятся моносахариды (глюкоза, фруктоза), олигосахариды (сахароза, мальтоза, стахиоза), полисахариды (крахмал, клетчатка, инулин, пектин и пр.).

Клетчатка выполняет роль естественного очистительного средства от токсинов. Инулин снижает в крови уровень холестерина и сахара, способствует повышению плотности костной массы, укрепляет иммунную систему. Пектин обладает антитоксическим действием, снижает уровень холестерина, благотворно действует на сердечно-сосудистую систему и укрепляет иммунитет. Пектин содержится в яблоках, ягодах, многих фруктах. Инулина много в цикории и топинамбуре. Клетчаткой богаты овощи, злаки. В качестве эффективной БАД, содержащей клетчатку, чаще всего используются отруби.

Глюкоза обязательно нужна для правильной работы мозга. Содержится она во фруктах и овощах.

Органические кислоты

Органические кислоты поддерживают в организме кислотно-щелочное равновесие и участвуют во многих обменных процессах. Каждая кислота имеет свой спектр действия. Аскорбиновая и янтарная кислоты обладают мощным антиоксидантным действием, за что их еще называют эликсиром молодости. Бензойная кислота обладает антисептическим действием и помогает бороться с воспалительными процессами. Олеиновая кислота улучшает работу сердечной мышцы, препятствует атрофии мышц. Ряд кислот входит в состав гормонов.

Много органических кислот входит в состав овощей и фруктов. Следует знать, что употребление слишком большого количества БАДов, содержащих органические кислоты, может привести к тому, что организму будет оказана медвежья услуга - произойдет излишне ощелачивание организма, что приведет к нарушению работы печени, ухудшению вывода токсинов.

Жирные кислоты

Многие жирные кислоты организм может синтезировать самостоятельно. Не может он производить только полиненасыщенные кислоты, которые названы омега-3 и 6. О пользе ненасыщенных жирных кислот омега-3 и омега-6 не слышал только ленивый.

Хотя открыли их в начале XX века, но их роль стали изучать только в 70-х годах прошедшего столетия. Диетологи выяснили, что питающиеся рыбой народы редко страдают гипертонией и атеросклерозом. Так как рыба богата кислотами омега-3, ими быстро заинтересовались. Выяснилось, что омега-3 благотворно воздействует на суставы, сосуды, состав крови, состояние кожи. Выяснено, что эта кислота восстанавливает гормональный баланс, а также позволяет регулировать уровень кальция - сегодня ее с успехом применяют для лечения и профилактики раннего старения, болезни Альцгеймера, мигреней, остеопроза, сахарного диабета, гипертонии, атеросклероза.

Омега-6 помогает регулировать работу гормональной системы, улучшить состояние кожи, суставов, особенно при заболеваниях артритом. Омега-9 является прекрасным профилактическим средством раковых заболеваний.

Много омеги-6 и 9 содержится в свином сале, орехах, семечках. Омега-3 содержится, кроме рыбы и морепродуктов, в растительных маслах, рыбьем жире, яйцах, бобовых.

Смолы

Как ни удивительно, они тоже являются биологически активными веществами. Они содержатся во многих растениях и обладают ценными лечебными свойствами. Так, смолы, содержащиеся в березовых почках, имеют антисептическое действие, а смолы хвойных деревьев обладают противовоспалительным, антисклеротическим, ранозаживляющим действием. Особенно много полезных свойств у живицы, используемой для приготовления пихтовых и кедровых бальзамов.

Фитонциды

Фитонциды обладают способностью уничтожать или тормозить размножение бактерий, микроорганизмов, грибков. Известно, что они убивают вирус гриппа, дизентерийную и туберкулезную палочку, обладают ранозаживляющим действием, регулируют секреторную функцию желудочно-кишечного тракта, улучшают сердечную деятельность. Особенно ценятся фитонцидные свойства чеснока, лука, сосны, ели, эвкалипта.

Ферменты

Ферменты являются биологическими катализаторами многих процессов, протекающих в организме. Иногда их называют энзимами. Они помогают улучшить пищеварение, выводят токсины из организма, стимулируют мозговую деятельность, укрепляют иммунитет, участвуют в обновлении организма. Могут быть растительного или животного происхождения.

Последние исследования недвусмысленно утверждают, что для того, чтобы растительные энзимы работали, растение не должно быть подвергнуто перед едой термической обработке. Готовка убивает энзимы и делает их бесполезными.

Особенно важен для организма коэнзим Q10 - витаминоподобное соединение, которое в норме вырабатывается в печени. Оно является мощным катализатором ряда жизненно важных процессов, особенно образования молекулы АТФ–о источника энергии. С годами процесс выработки коэнзима замедляется, и в пожилом возрасте его содержится совсем мало. Считается, что недостаток коэнзима повинен в старении.

Сегодня предлагается вводить в рацион коэнзим Q10 искусственно с БАДами. Такие препараты широко используются для улучшения деятельности сердца, улучшения внешнего вида кожи, улучшения работы иммунной системы, в целях борьбы с лишним весом. Мы как-то писали про , здесь добавим, что, принимая коэнзим, стоит учитывать эти рекомендации тоже.

Гликозиды

Гликозиды представляют собой соединения глюкозы и других сахаров с несахаристой частью. Сердечные гликозиды, содержащиеся в растениях, полезны при заболеваниях сердца и нормализуют его работу. Такие гликозиды содержатся в наперстянке, ландыше, желтушнике.

Антрагликозиды обладают слабительным действием, а также способны растворять камни в почках. Антрагликозиды содержатся в коре крушины, корнях ревеня, конского щавеля, в марене красильной.

Сапонины имеют различное действие. Так, сапонины хвоща отличаются мочегонным действием, солодки - отхаркивающим, женьшеня и аралии - тонизирующим.

Есть еще горечи, которые стимулируют выделение желудочного сока и нормализуют пищеварение. Интересно, что их химическое строение до сих пор не изучено. Горечи содержатся в полыни.

Флавоноиды

Флавоноиды являются фенольными соединениями и содержатся во многих растениях. По лечебному действию флавоноиды похожи на витамин Р - рутин. Флавоноиды имеют сосудорасширяющие, противовоспалительные, желчегонные, сосудоукрепляющие свойства.

Дубильные вещества тоже относят к фенольным соединениям. Эти биологически активные вещества имеют кровоостанавливающее, вяжущее и антимикробное действие. Эти вещества содержат кора дуба, кровохлебка, листья брусники, корень бадана, ольховые шишки.

Алкалоиды

Алкалоиды - это биологически активные азотсодержащие вещества, содержащиеся в растениях. Они очень активны, большинство алкалоидов в большой дозе ядовиты. В небольшой же это ценнейшее лечебное средство. Как правило алкалоиды обладают избирательным воздействием. К алкалоидам относятся такие вещества, как кофеин, атропин, хинин, кодеин, теобромин. Кофеин оказывает возбуждающее воздействие на нервную систему, а кодеин, к примеру, подавляет кашель.

Зная, какими бывают биологически активные вещества и как они действуют, можно более осмысленно выбирать биологически активные добавки. Это в свою очередь позволит подбирать именно тот препарат, который действительно поможет справиться с проблемами со здоровьем и улучшить качество жизни.

Введение

Любой живой организм представляет собой открытую физико-химическую систему, которая может активно существовать только в условиях достаточно интенсивного потока химических веществ, необходимых для развития и поддержания структуры и функции. Для гетеротрофных организмов (животных, грибов, бактерий, простейших, бесхлорофильных растений) химические соединения поставляют всю или большую часть энергии, необходимой для их жизнедеятельности. Кроме снабжения живых организмов строительным материалом и энергией, они выполняют разнообразнейшие функции носителей информации для одного организма, обеспечивают внутри- и межвидовую коммуникацию.

Таким образом, под биологической активностью химического соединения следует понимать его способность изменять функциональные возможности организма (invitro или invivo ) или сообщества организмов. Такое широкое определение биологической активности означает, что почти любое химическое соединение или композиция соединений обладает тем или иным видом биологической активности.

Даже весьма инертные в химическом отношении вещества могут обладать заметным биологическим действием при соответствующем способе введения в организм.

Таким образом, вероятность найти биологически активное соединение среди всех химических соединений близка к единице, однако нахождение химического соединения с заданным видом биологической активности представляет собой довольно сложную задачу.

Биологически активные вещества – химические вещества, необходимые для поддержания жизнедеятельности живых организмов, обладающие высокой физиологической активностью при небольших концентрациях по отношению к определенным группам живых организмов или их клеткам.

За единицу биологической активности химического вещества принимают минимальное количество этого вещества, способного подавлять развитие или задерживать рост определенного числа клеток, тканей стандартного штамма (биотесты) в единице питательной среды.

Биологическая активность – понятие относительное. Одно и тоже вещество может иметь различную биологическую активность по отношению к одному и тому же виду живого организма, ткани или клетки в зависимости от значения рН, температуры, наличия других БАВ. Стоит ли говорить, что если речь идет о разных биологических видах, то действие вещества может быть одинаковым, выраженным в разной степени, прямо противоположным или оказывать заметное действие на один организм и быть инертным ля другого.

Для каждого вида БАВ существуют свои методы определения биологической активности. Так, для ферментов, метод определения активности заключается в регистрации скорости расходования субстрата (S) или скорости образования продуктов реакции (Р).



Для каждого витамина существует свой метод определения активности (количества витамина в опытном образце (например, таблетках) в единицах МЕ).

Часто в медицинской и фармакологической практике используется такое понятие, как ЛД 50 – т.е. концентрация вещества при введении которой половина испытуемых животных погибает. Это мера токсичности БАВ.

Классификация

Самая простая классификация – Общая – делит все БАВ на два класса:

  • эндогенные
  • экзогенные

К эндогенным веществам относят

Популярное