» »

В чем заключается важное значение атмосферы. Каково значение атмосферы в жизни нашей планеты? Роль атмосферы в жизни планеты

20.11.2019

Введение

Атмосферный воздух является самой важной жизнеобеспечивающей природной средой и представляет собой смесь газов и аэрозолей приземного слоя атмосферы, сложившуюся в ходе эволюции Земли, деятельности человека и находящуюся за пределами жилых, производственных и иных помещений. Результаты экологических исследований, как в России, так и за рубежом, однозначно свидетельствуют о том, что загрязнение приземной атмосферы - самый мощный, постоянно действующий фактор воздействия на человека, пищевую цепь и окружающую среду. Атмосферный воздух имеет неограниченную емкость и играет роль наиболее подвижного, химически агрессивного и всепроникающего агента взаимодействия вблизи поверхности компонентов биосферы, гидросферы и литосферы.

Атмосфера оказывает интенсивное воздействие не только на человека и биоту, но и на гидросферу, почвенно-растительный покров, геологическую среду, здания, сооружения и другие техногенные объекты. Поэтому охрана атмосферного воздуха и озонового слоя является наиболее приоритетной проблемой экологии и ей уделяется пристальное внимание во всех развитых странах.

Загрязненная приземная атмосфера вызывает рак легких, горла и кожи, расстройство центральной нервной системы, аллергические и респираторные заболевания, дефекты у новорожденных и многие другие болезни, список которых определяется присутствующими в воздухе загрязняющими веществами и их совместным воздействием на организм человека. Результаты специальных исследований, выполненных в России и за рубежом, показали, что между здоровьем населения и качеством атмосферного воздуха наблюдается тесная положительная связь. (Чернова Н.М. 1997г.)

Целью данной работы является: изучение влияния ЗАО «Челны Хлеб» на атмосферу.

Для выполнения поставленной цели решали следующие задачи:

1. Изучение производственной деятельности предприятия как источника загрязнения атмосферы.

2. Изучение качественного и количественного состава загрязняющих веществ.

3. Изучение мероприятия по защите атмосферы ЗАО «Челны Хлеб».

4. Изучение природоохранных мероприятий ЗАО «Челны Хлеб».

Литературный обзор

Роль атмосферы в жизни человека и других организмов

При отсутствии атмосферы жизнь на Земле была бы невозможна. Из атмосферы мы черпаем, когда дышим, кислород, необходимый для жизнедеятельности практически любого организма. К счастью, в атмосфере находится огромное количество кислорода, которое все время пополняется фотосинтезирующими растениями.

Но окружающая нас атмосфера нужна нам не только как источник кислорода. Она обеспечивает и исключительно благоприятные условия для жизни на Земле вообще. Мощный слой земной атмосферы защищает жизнь, бурлящую на ее поверхности, от непосредственного воздействия Космоса, в котором ничтожной песчинкой плывет наша Земля.

Атмосфера пропускает солнечные лучи, когда светит Солнце, но не позволяет Земле расстаться с полученным ею теплом, когда Солнце заходит. Благодаря этому средняя температура поверхности нашей планеты достигает плюс 14°С, а колебания температур не превышают 100°С.

В результате неравномерного нагревания атмосферы в ней возникают воздушные течения и ветры. Благодаря им происходит выравнивание температуры и влажности, переносятся с места на место облака и тучи, поддерживаются круговороты воды и многих других веществ, столь необходимых для всего живого. (Мизун Ю.Г. ,1994г.)

Атмосфера -- воздушная оболочка земного шара -- имеет неоднородное, слоистое строение. До высоты 16-18 км над экватором и 1--10 км над полюсами воздух наиболее плотен. Этот слой, в котором сосредоточено 4/5 всей массы атмосферы, называют тропосферой. С шей связана погода. В этом слое существует практически все разнообразие форм жизни, и поэтому именно тропосферу (точнее ее нижнюю часть) относят к биосфере. В контакте с тропосферой ведут свою жизнь обитатели суши.

Выше тропосферы выделяют стратосферу (до высот примерно 46-48 км), мезосферу (до 80 км) и термосферу (выше 80 км). С увеличением высоты быстро уменьшаются атмосферное давление и плотность воздуха.

С увеличением высоты существенно изменяются температура и химический состав воздуха.

Неоднороден также и газовый (химический) состав атмосферного воздуха. Наиболее интересен для нас состав воздуха нижних, приземных слоев тропосферы, которым мы непосредственно дышим. Он определяется следующим соотношением газов в процентах к объему: Азот - 78,08; Кислород - 20,95; Аргон - 0,92; Углекислый газ - 0,03. 0,02, газы на уровне примесей: Ксенон, Водород, Неон, Гелий, Криптон, Радон, Йод, Озон, Метан, Сероуглерод.

Химический (газовый) состав атмосферы существенно не меняется до высоты 100 км. Несколько выше атмосфера также состоит главным образом из азота и кислорода, но на высотах 90--100 км появляется атомарный кислород, выше 110--120 км кислород почти весь становится атомарным.

Под воздействием ультрафиолетовых лучей на высоте 10-60 км образуется озон, максимальные концентрации которого располагаются на высоте 22--25 км. Именно он, в основном, поглощает ультрафиолетовые лучи, играя важную роль в существовании жизни.

Рассматривая состав воздуха, необходимо отметить присутствие в нем атмосферной пыли -- его постоянной составной части. Атмосферная пыль имеет большое значение для жизнедеятельности растительного и животного мира. Пыль поглощает прямую солнечную радиацию и защищает живые организмы от ее вредного влияния. Пыль также рассеивает прямые солнечные лучи, создавая более равномерное освещение поверхности Земли. Кроме того, она способствует конденсации в атмосфере водяных паров, а следовательно, и образованию осадков.

В воздухе тропосферы присутствует еще один очень важный для жизни на Земле компонент -- вода, а точнее ее пары. Количество водяных паров очень переменчиво во времени, географической широте и служит важной характеристикой климата (от 0 до 4% по объему). Чаще всего содержание паров воды в воздухе выражают через относительную влажность. Дело в том, что способность воздуха накапливать в себе пары жидкостей тем больше, чем выше температура (при 30°С в 1м3 воздуха может содержаться 30 г воды; при -20°С -- 0,5 г). Если количество паров превышает "емкость" воздуха, например из-за падения температуры, то их избыток начинает конденсироваться в виде капелек, что объясняет образование туманов, облаков, пара. Обычно же количество водяных паров бывает несколько меньше и относительной влажностью называют соотношение фактического количества водяного пара к максимально возможному при данной температуре, выраженное в процентах. Интервал влажности от 30 до 60% считается оптимальным для человека. (Торсуев Н.П., 1997 г.)

Наибольшее значение для различных экосистем имеют три газа, входящих в состав атмосферы: кислород, углекислый газ и азот. Эти газы участвуют в основных биогеохимических циклах.

Кислород играет важнейшую роль в жизни большинства живых организмов на нашей планете. Он необходим всем для дыхания. Современная атмосфера содержит едва ли двадцатую часть кислорода, имеющегося на нашей планете. Главные запасы кислорода сосредоточены в карбонатах, в органических веществах и окислах железа, часть кислорода растворена в воде. В атмосфере, по-видимому, сложилось приблизительное равновесие между производством кислорода в процессе фотосинтеза и его потреблением живыми организмами. Но в последнее время появилась опасность, что в результате человеческой деятельности запасы кислорода в атмосфере могут уменьшиться. Особую опасность представляет разрушение озонового слоя, которое наблюдается в последние годы. Большинство ученых связывают это с деятельностью человека.

Углекислый газ (диоксид углерода) используется в процессе фотосинтеза для образования органических веществ. Именно благодаря этому процессу замыкается круговорот углерода в биосфере. Как и кислород, углерод входит в состав почв, растений, животных, участвует в многообразных механизмах круговорота веществ в природе. Содержание углекислого газа в воздухе, который мы вдыхаем, примерно одинаково в различных районах планеты. Исключение составляют крупные города, в которых содержание этого газа в воздухе бывает выше нормы.

Некоторые колебания - содержания углекислого газа в воздухе местности зависят от времени суток, сезона года, биомассы растительности. В то же время исследования показывают, что с начала века среднее содержание углекислого газа в атмосфере, хотя и медленно, но постоянно увеличивается. Ученые связывают этот процесс главным образом с деятельностью человека.

Азот -- незаменимый биогенный элемент, поскольку он входит в состав белков и нуклеиновых кислот. Атмосфера -- неисчерпаемый резервуар азота, однако основная часть живых организмов не может непосредственно использовать этот азот: он должен быть предварительно связан в виде химических соединений.

Частично азот поступает из атмосферы в экосистемы в виде оксида азота, образующегося под действием электрических разрядов во время гроз. Однако основная часть азота поступает в воду и почву в результате его биологической фиксации. Существует несколько видов бактерий и сине-зеленых водорослей (к счастью, весьма многочи с ленных), которые способны фиксировать азот атмосферы. В результате их деятельности, а также благодаря разложению органических остатков в почве растения-автотрофы получают возможность усваивать необходимый азот.

Другие составные части воздуха не участвуют в биохимических циклах. (Криксунов Е.А., 1997.)


Атмосфера Земли (от греч. atmos – пар и sphaira – шар) – газовая оболочка, окружающая Землю. Атмосферой принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землей как единое целое. Масса атмосферы составляет около 5,15–10 15 т. Атмосфера обеспечивает возможность жизни на Земле и оказывает большое влияние на разные стороны жизни человечества.

Происхождение и роль атмосферы

Современная земная атмосфера имеет, по-видимому, вторичное происхождение и образовалась из газов, выделенных твердой оболочкой Земли (литосферой) после сформирования планеты. В течение геологической истории Земли атмосфера претерпела значительную эволюцию под влиянием ряда факторов: диссипации (улетучивания) атмосферных газов в космическое пространство; выделения газов из литосферы в результате вулканической деятельности; диссоциации (расщепления) молекул под влиянием солнечного ультрафиолетового излучения; химических реакций между компонентами атмосферы и породами, слагающими земную кору; аккреции (захвата) межпланетной среды (например, метеорного вещества). Развитие атмосферы было тесно связано с геологическими и геохимическими процессами, а также с деятельностью живых организмов. Атмосферные газы, в свою очередь, оказывали большое влияние на эволюцию литосферы. Например, громадное количество углекислоты, поступившей в атмосферу из литосферы, было затем аккумулировано в карбонатных породах. Атмосферный кислород и поступающая из атмосферы вода явились важнейшими факторами, которые воздействовали на горные породы. На протяжении всей истории Земли атмосфера играла большую роль в процессе выветривания. В этом процессе участвовали атмосферные осадки, которые образовывали реки, изменявшие земную поверхность. Не меньшее значение имела деятельность ветра, переносившего мелкие фракции горных пород на большие расстояния. Существенно влияли на разрушение горных пород колебания температуры и другие атмосферные факторы. Наряду с этим атмосфера защищает поверхность Земли от разрушительного действия падающих метеоритов, большая часть которых сгорает при вхождении в плотные слои атмосферы.

Деятельность живых организмов, оказавшая сильное влияние на развитие атмосферы сама в очень большой степени зависит от атмосферных условий. Атмосфера задерживает большую часть ультрафиолетового излучения Солнца, которое губительно действует на многие организмы. Атмосферный кислород используется в процессе дыхания животными и растениями, атмосферная углекислота – в процессе питания растений. Климатические факторы, в особенности термический режим и режим увлажнения, влияют на состояние здоровья и на деятельность человека. Особенно сильно зависит от климатических условий сельское хозяйство. В свою очередь, деятельность человека оказывает все возрастающее влияние на состав атмосферы и на климатический режим.

Наибольшее значение для жизни, а также происходящих процессов на Земле имеет нижний слой атмосферы - тропосфера, в которой находится 4/5 всей массы воздуха. В тропосфере образуются облака, дождь, снег, град, ветер. Поэтому тропосферу называют «фабрикой погоды». Процессы, происходящие в ней, часто становятся причиной страшных стихийных бедствий - засух, наводнений, ураганов и других явлений, в результате которых гибнут люди, животные и растения.

Атмосферный воздух – один из важнейших природных ресурсов, без которого жизнь на Земле была бы совершенно невозможна. Без воды человек может прожить одну неделю, без пищи – пять недель, без воздуха 5-6 минут.

Через атмосферу осуществляется фотосинтез, обмен энергией и информацией – основные процессы биосферы. Под воздействием атмосферы происходят сложные экзогенные процессы (выветривание, деятельность природных вод, мерзлоты и др.). В верхних сферах атмосферы, не долетая до поверхности земли, сгорает большая часть метеоритов. Атмосфера защищает живые существа от губительного действия космических излучений, регулирует сезонный и суточный тепловой режим. Без атмосферы суточные колебания температуры на земле составляли бы +-200 градусов. Для некоторых организмов (бактерии, летающие насекомые, птицы) атмосфера – основная жизненная среда. Атмосфера является средой, в которой распространяются звуки. Озоновый слой атмосферы, расположенный на высоте 16-26 км поглощает 13% солнечной радиации и большую часть жесткого ультрафиолетового излучения, защищая органический мир от их разрушающего действия.

Роль атмосферы в удержании тепла на планете

В связи с наклоном оси вращения Земли на 23,5° к плоскости эклептики количество солнечной радиации, приходящей на верхнюю границу атмосферы, является функцией географической широты местности и времени года.

При прохождении через земную атмосферу интенсивность солнечного излучения заметно уменьшается. Ослабление зависит от свойств облачного покрова, содержания пыли в атмосфере, а также от суточных и сезонных изменений различных физических величин.
В среднем за год 25-30% приходящего солнечного излучения отражается облаками обратно в космическое пространство. Еще 25% излучения поглощается, а затем переизлучается облаками, пылью, газами, т. е. в виде нисходящей, диффузно рассеянной радиации. Примерно столько же поступает на поверхность Земли в виде прямой солнечной радиации.

Соотношение между прямым и рассеянным светом закономерно меняется в зависимости от географической широты. В полярных районах преобладает рассеянная радиация, составляющая до 70% суммарного лучистого потока, а в экваториальных областях она не превышает 30% . Это связано с лучшим прохождением лучей прямой радиации через атмосферу вертикально вниз, а не под малым углом к горизонту.

Часть излучения, достигающего поверхности, возвращается в атмосферу. Ее количество зависит от альбедо (отражающей способности) поверхности: снег отражает около 80-95%, травянистая поверхность - 20%, а темные почвы - только 8-10% потока приходящего излучения. Среднее альбедо Земли- 35-45%.
Большая часть поглощаемой водоемами и почвой солнечной энергии затрачивается на испарение воды.

Возобновима ли атмосфера?

Загрязнение атмосферы – это привнесение в атмосферу или образование в ней физико-химических агентов и веществ, обусловленное как природными, так и антропогенными факторами. К природным относятся извержения вулканов, пыльные бури, лесные пожары, выветривание, морская соль, бактерии, споры плесени, продукты разложения растений и животных и др.

Атмосферный воздух лишь условно можно считать неисчерпаемым природным ресурсом. При антропогенном воздействии человека, химический состав и физические свойства воздуха постоянно ухудшаются. На земле практически не осталось таких участков, где воздух сохраняет естественную чистоту и качество, а в большинстве промышленных районов состояние атмосферы представляет серьёзную опасность для здоровья. Человек в сутки потребляет до 25 кг воздуха. Но нормальная жизнедеятельность человека и всех живых организмов требует не только присутствие воздуха, а и определённая его чистота. От качественного состава воздуха зависит не только здоровье людей, состояние и качество биологических ресурсов, но и безопасность сырья для производства товаров народного потребления. Загрязнения из воздуха попадают в воду, почву, а по пищевым цепям – в организм человека. Многие вещества могут оказывать вредное воздействие на человека и животных даже в незначительных концентрациях – в десятитысячных долях мг на 1м 3 воздуха.



Роль атмосферы Земли

Атмосфера является наиболее легкой геосферой Земли, тем не менее ее влияние на многие земные процессы очень велико.

Начнем с того, что именно благодаря атмосфере стало возможно зарождение и существование жизни на нашей планете. Современные животные не могут обходиться без кислорода, а большинство растений, водорослей и цианобактерий - без углекислого газа. Кислород используется животными для дыхания, углекислый газ - растениями в процессе фотосинтеза, благодаря чему создаются необходимые растениям для жизнедеятельности сложные органические вещества, такие как, разнообразные соединения углерода, углеводы, аминокислоты, жирные кислоты.

Важной для нормальной жизнедеятельности организмов на Земле является роль атмосферы как защитника нашей планеты от ультрафиолетового и рентгеновского излучения Солнца, космических лучей, метеоров. Подавляющую часть излучения задерживают верхние слои атмосферы - стратосфера и мезосфера, в результате чего проявляются такие удивительные электрические явления, как полярные сияния. Остальная, меньшая часть излучения, рассеивается. Здесь же, в верхних слоях атмосферы, сгорают и метеоры, которые мы можем наблюдать в виде маленьких "падающих звёзд".

Разные участки на Земле нагреваются неравномерно. Низкие широты нашей планеты, т.е. области с субтропическим и тропическим климатом, получают тепла от Солнца гораздо больше чем средние и высокие - области с умеренным и арктическим (антарктическим) типом климата. По-разному нагреваются материки и океаны. Если первые и нагреваются и охлаждаются гораздо быстрее, то вторые долго поглощают тепло, но в тоже время и также долго его отдают. Как известно теплый воздух является более легким чем холодный, а потому поднимается вверх. Его место у поверхности занимает холодный, более тяжелый воздух. Так образуется ветер и формируется погода. А ветер в свою очередь приводит к процессам физического и химического выветривания, последние из которых формируют экзогенные формы рельефа

С подъёмом в высоту климатические различия между разными регионами земного шара начинают стираться. А начиная с высоты 100 км. атмосферный воздух лишается возможности поглощать, проводить и передавать тепловую энергию путём конвекции. Единственным способом передачи тепла становится тепловое излучение, т.е. нагревание воздуха космическими и солнечными лучами.

Кроме тоготолько при наличии атмосферы на планете возможен круговорот воды в природе, выпадение осадков и образование облаков.

Круговорот воды - это процесс циклического перемещения воды в пределах земной биосферы, состоящий из процессов испарения, конденсации и осадков. Различают 3 уровня круговорота воды:

Малый, или океанический, круговорот - водяной пар, образовавшийся над поверхностью океана, сконденсируется и выпадает в виде осадков снова в океан.

Внутриконтинентальный круговорот - вода, которая испарилась над поверхностью суши, опять выпадает на сушу в виде атмосферных осадков.

Стоит также отметить, что выпадение осадков становится возможным лишь при наличии в воздухе т.н. ядер конденсации - мельчайших твердых частиц. Если бы в земной атмосфере таких частиц не было, то и никакие осадки бы не выпадали.

И последнее что хотелось сказать про роль атмосферы Земли, это то, что только благодаря ей на нашей планете возможно распространение звуков и возникновение аэродинамической подъёмной силы. На планетах лишенных или имеющих атмосферу малой мощности царит мертвая тишина. Человек на таких небесных телах буквально лишается дара речи. При отсутствии атмосферы становится невозможным управляемый аэродинамический полёт, на смену которому приходит баллистический.

Роль атмосферы в жизни планеты

Атмосфера

Хочу курить американские сигареты. .

Атмосфера является одним из необходимых условий возникновения и существования жизни на Земле.

Атмосфера:

  • участвует в формировании климата на планете;
  • регулирует тепловой режим планеты;
  • способствует перераспределению тепла у поверхности;
  • предохраняет Землю от резких колебаний температуры. При отсутствии атмосферы и водоемов температура поверхности Земли в течение суток колебалась бы в интервале 200 0С;
  • благодаря наличию кислорода атмосфера участвует в обмене и круговороте веществ в биосфере. В современном состоянии атмосфера существует сотни миллионов лет, все живое приспособлено к строго определенному ее составу;
  • газовая оболочка защищает живые организмы от губительных ультрафиолетовых, рентгеновских и космических лучей;
  • атмосфера предохраняет Землю от падения метеоритов;
  • в атмосфере распределяются и рассеиваются солнечные лучи, что создает равномерное освещение;
  • атмосфера является средой, где распространяется звук.

Из–за действия гравитационных сил атмосфера не рассеивается в мировом пространстве, а окружает Землю, вращается вместе с ней.

Атмосфера, безопасность, бесплатно, БЖД, Земля, климат, курсовая, планета, реферат, скачать

Вопрос 135: Какой слой атмосферы имеет наибольшее значение для жизни на земле?

Ответ: тропосфера

Вопрос 136: Сколько времени требуется смениться атмосферной влаге?

Ответ: 10 дней

Вопрос 137: Человек часть….

Ответ: биосфера

Вопрос 138: Кем впервые был введен термин «биосфера»?

Ответ: Зюсом

Вопрос 139: Какая из сфер появилась в природе последней? Л

Ответ: биосфера

Вопрос 140: Кто впервые создал учение о биосфере

Ответ: Вернадскяй

Вопрос 141: Какая оболочка состоит из осадочных и магматических пород?

Ответ: литосфера

Вопрос 142: Каково максимальное расстояние между Землей и Солнцем?

Ответ: 4 млн. км.

Вопрос 143: Кто первым заговорил от шарообразности Земли?

Ответ: Аристотель, Пифагор

Вопрос 144: Какая часть объема гидросферы состоит из пресной воды?

Ответ: 2,5%

Вопрос 145: Как называется сгущение водяного пара в нижнем слое атмосферы?

Ответ: погодой

Вопрос 146: Состояние тропосферы в данном месте в данный момент наз.

Ответ: погодой

Вопрос 147: Почва-это

Ответ: верхний тонкий слой земли, обладающий плодородием

Ответ: Иртыш

Вопрос 149: Часть географической оболочки, заселенная и измененная организмами-это

Ответ: биосфера

Вопрос 150: Самое большое озеро в мире 1 р

Ответ: Каспийское

Вопрос 151: Земная кора и верхняя часть мантии наз-ся.

Ответ: литосфера

Вопрос 152: Верхний плодородный слой земли-это

Ответ: почва

Вопрос 153: Воздушная оболочка Земли

Ответ: атмосфера

Вопрос 154: Прибор, измеряющий атмосферное давление

Ответ: барометр

Вопрос 155: Состав географической оболочки –

Ответ: гидросфера, биосфера, часть атмосферы, часть литосферы

Вопрос 156: Основная сила, формирующая географическую оболочку Т

Ответ: солнечная радиация

Вопрос 157: Изменение климата, разрушение озонового слоя — это проблема

Ответ: экологическая

Вопрос 158: Экологическое направление в географии открыл

Ответ: И.В.Мушкетов

Вопрос 159: Высота этого слоя достигает в атмосфере 50-55 км.

Ответ: стратосфера

Вопрос 160: Сколько существует источников загрязнения атмосферы

Ответ: 3

Вопрос 161: Что наиболее сильно загрязняет воздух?

Ответ: промышленное производство

Вопрос 162: Ресурсы речных вод Республики составляют…

Ответ: 100,5 км

Вопрос 163: Сколько объема речных вод формируется на тер. Каз-на

Ответ: 56,5 км

Вопрос 164: Третий по величине бессточный водоем Каз-на

Ответ: р. Или

Вопрос 165: Сколько на тер.

Кав-на разведено месторождений подземных вод

Ответ: 700

Вопрос 166: В каком году был принят закон об охране атмосферного воздуха.?

Ответ: 2002 г.

Вопрос 167: Что выделяется в процессе сгорания сернистых руд

Ответ: сернистый ангидрид.

Вопрос 168: Сколько сернистого ангидрида выделяется в год

Ответ: 170 млн. тонн.

lektsii.net — Лекции.Нет — 2014-2018 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав

Атмосфера является наиболее легкой геосферой Земли, тем не менее ее влияние на многие земные процессы очень велико.

Начнем с того, что именно благодаря атмосфере стало возможно зарождение и существование жизни на нашей планете. Современные животные не могут обходиться без кислорода, а большинство растений, водорослей и цианобактерий - без углекислого газа. Кислород используется животными для дыхания, углекислый газ - растениями в процессе фотосинтеза, благодаря чему создаются необходимые растениям для жизнедеятельности сложные органические вещества, такие как, разнообразные соединения углерода, углеводы, аминокислоты, жирные кислоты.

С подъемом в высоту парциальное давление кислорода начинает снижаться. Что это значит? А значит это, что атомов кислорода в каждой единице объёма становится все меньше и меньше. При нормальное атмосферном давлении парциальное давление кислорода в легких человека (т.н. альвеолярный воздух) составляет 110 мм. рт. ст., давление углекислого газа - 40 мм рт. ст., а паров воды - 47 мм рт. ст.. При подъеме в высоту давление кислорода в легких начинает падать, а углекислого газа и воды остается на прежнем уровне.

Начиная с высоты 3 километров над уровнем моря у большинства людей начинается кислородное голодание или гипоксия. У человека наблюдается одышка, усиленное сердцебиение, головокружение, шум в ушах, головная боль, тошнота, мышечная слабость, потливость, нарушение остроты зрения, сонливость. Резко снижается работоспособность. На высотах свыше 9 километров дыхание человека становится невозможным и потому находиться без специальных дыхательных аппаратов строго запрещено.

Важной для нормальной жизнедеятельности организмов на Земле является роль атмосферы как защитника нашей планеты от ультрафиолетового и рентгеновского излучения Солнца, космических лучей, метеоров. Подавляющую часть излучения задерживают верхние слои атмосферы - стратосфера и мезосфера, в результате чего проявляются такие удивительные электрические явления, как полярные сияния. Остальная, меньшая часть излучения, рассеивается. Здесь же, в верхних слоях атмосферы, сгорают и метеоры, которые мы можем наблюдать в виде маленьких "падающих звёзд".

Атмосфера служит регулятором сезонных колебаний температур и сглаживания суточных, предотвращая Землю от чрезмерного нагревания днём и охлаждения ночью. Атмосфера, благодаря наличию в её составе водяного пара, углекислого газа, метана и озона, легко пропускает солнечные лучи, нагревающие её нижние слои и подстилающую поверхность, но задерживает обратное тепловое излучение от земной поверхности в виде длинноволновой радиации. Эта особенность атмосферы называется парниковым эффектом. Без него суточные колебания температур нижних слоёв атмосферы достигали бы колоссальных величин: до 200° С и естественно сделали бы невозможным существование жизни в том виде, в котором мы её знаем.

Разные участки на Земле нагреваются неравномерно. Низкие широты нашей планеты, т.е. области с субтропическим и тропическим климатом, получают тепла от Солнца гораздо больше чем средние и высокие - области с умеренным и арктическим (антарктическим) типом климата. По-разному нагреваются материки и океаны. Если первые и нагреваются и охлаждаются гораздо быстрее, то вторые долго поглощают тепло, но в тоже время и также долго его отдают. Как известно теплый воздух является более легким чем холодный, а потому поднимается вверх. Его место у поверхности занимает холодный, более тяжелый воздух. Так образуется ветер и формируется погода. А ветер в свою очередь приводит к процессам физического и химического выветривания, последние из которых формируют экзогенные формы рельефа.

С подъёмом в высоту климатические различия между разными регионами земного шара начинают стираться. А начиная с высоты 100 км. атмосферный воздух лишается возможности поглощать, проводить и передавать тепловую энергию путём конвекции.

Единственным способом передачи тепла становится тепловое излучение, т.е. нагревание воздуха космическими и солнечными лучами.

Кроме того только при наличии атмосферы на планете возможен круговорот воды в природе, выпадение осадков и образование облаков.

Круговорот воды - это процесс циклического перемещения воды в пределах земной биосферы, состоящий из процессов испарения, конденсации и осадков. Различают 3 уровня круговорота воды:

Большой, или мировой, круговорот - водяной пар, образовавшийся над поверхностью океанов, переносится ветрами на материки, выпадает там в виде атмосферных осадков и возвращается в океан в виде стока. В этом процессе изменяется качество воды: при испарении соленая морская вода превращается в пресную, а загрязненная - очищается.

Дата публикования: 2015-01-26; Прочитано: 1269 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Атмосфера и ее защитные функции.

Земная жизнь уязвима для космических лучей и нуждается в постоянной и надежной от них защите. Воздушная оболочка Земли, как любой внешний покров, осуществляет и защитные функции. Хотя по житейским нашим меркам атмосфера никак не укладывается в понятие средства защиты, именно «невесомый» воздух - безотказная преграда для губительных воздействий космоса.

Пробить эту «броню» могут лишь крупные метеориты с исходной массой в десятки и сотни тонн - явление, как известно, чрезвычайное. Метеориты помельче - отнюдь не редкость. Ежесуточно в небо над Москвой, например, вонзается до 200 метеоритов, нацело сгорающих в атмосфере.
От Солнца поступает на Землю энергия, а следовательно, и сама возможность жизни. Но жизненную дозу солнечной энергии «отмеряет» атмосфера. Не будь ее, днем Солнце раскаляли бы земную поверхность до + 100 °С, а ночью до - 100 °С выстуживал бы ее ледяной космос; 200-градусный перепад суточных температур намного превышает возможности к выживанию большинства живых организмов.
Когда впервые в открытый космос вышел Алексей Леонов, его жизнь и здоровье оберегал прочнейший скафандр. А на Земле мы надежно защищены воздушным покрывалом.
На верхнюю границу атмосферы ежесекундно обрушивается мощный поток солнечных и иных космических излучений широкого диапазона волн и энергий:- гамма-излучение, рентгеновские, ультрафиолетовые лучи, видимый свет, инфракрасное излучение и т. п. Если бы все они достигли земной поверхности, то мгновенно убийственная их энергия испепелила бы все живое. Этого не случается, и на Земле существует жизнь благодаря атмосфере.
Для всего разнообразия излучений атмосфера оставляет лишь два «окна прозрачности», две узкие «щелочки», сквозь которые проникают некоторые радиоволны, а также свет с частью ультрафиолетовых и инфракрасных лучей. Главную роль в этом играют ионосфера и озоновый экран на высоте 20-55 км. Хотя озон крайне разрежен, именно здесь большая часть энергии ультрафиолетовых лучей расходуется на разрушение молекул кислорода. Процеженные через озоновый фильтр, они еще опасны для некоторых микроорганизмов, в том числе болезнетворных, и полезны для человека.

В конечном счете, свет и тепло, несущие Земле жизнь, сквозь атмосферу пропускаются; все, сеящее смерть, задерживается атмосферой.
Климат и погода. Атмосфера регулирует важнейшие параметры климата - влажность, температуру, давление.
Скопление капелек влаги или кристаллов льда, т. е. образование облаков, возможно лишь при наличии в воздухе ядер конденсации - твердых частиц диаметром в сотые доли микрометра, или, проще говоря, тончайшей пыли. В абсолютно «стерильной» атмосфере дождь невозможен.
Вертикальные и горизонтальные перемещения теплых и холодных, сухих и увлажненных масс воздуха, местное распределение температур и осадков, т. е. формирование погоды, осуществляется за счет различий атмосферного давления и возникновения ветров.
Роль атмосферы в круговороте веществ. Циклы кислорода, углерода, азота, воды обязательно проходят атмосферную стадию. Воздушный бассейн выступает в роли гигантского резервуара, где все эти вещества накапливаются и, главное, распределяются по земному шару. Тем самым осуществляется регуляция скорости и интенсивности круговорота веществ в природе.

Атмосфера - часть жизненной среды. Для большинства обитателей суши, и человека в их числе, важны физические свойства атмосферы.
Атмосферное давление у поверхности Земли (около 9,8 104 Па) называют нормальным. Это норма существования наземных организмов, которую мы, как любую норму, не замечаем, хотя на человека при этом давит 10-12 т воздуха. Для нас ощутимы лишь отклонения от нее: при понижении давления на высоте около 5 тыс. м появляются признаки «горной болезни» (головокружение, тошнота, слабость); при погружении в воду на глубину 10 м давление оказывает заметное влияние на человеческий организм (боль в барабанных перепонках, затрудненное дыхание и т. п.). В абсолютном вакууме гибель наступает мгновенно.
Прозрачность, т. е. проницаемость, атмосферы для солнечных излучений - видимых, ультрафиолетовых, инфракрасных - исключительно важна для живых организмов. Количество и качество света определяют интенсивность фотосинтеза - единственного природного процесса фиксации солнечной энергии на Земле. Повышение уровня ультрафиолетового облучения может привести к ожогам и другим болезненным явлениям, понижение создает условия для массового размножения болезнетворных организмов. Установлено сложное влияние прозрачности на тепловой баланс Земли, о чем подробнее будет сказано ниже. Современные изменения прозрачности атмосферы в значительной мере определяются антропогенными влияниями, что уже привело к возникновению ряда серьезных проблем.
Весьма существенно для биосферы состояние газового баланса. Свыше 3/4 воздуха составляет азот, названный Лавуазье «безжизненным». Он входит в первооснову носителей жизни - белков и нуклеиновых кислот. Правда, в их синтезе атмосферный азот непосредственного участия не принимает, но является гигантским резервуаром первичного «сырья» как для деятельности азотфиксирующих микроорганизмов и водорослей, так и для промышленности азотных удобрений. Масштабы и особенно темпы роста промышленной фиксации азота уже вносят некоторые коррективы в представление о неисчерпаемости его запасов в атмосфере.
Сказанное в еще большей мере приложимо к кислороду, составляющему четвертую часть всех атомов живого вещества. Без кислорода невозможно дыхание и, следовательно, энергетика многоклеточных животных. Вместе с тем кислород - это продукт жизнедеятельности, выделяемый фотосинтезирующими организмами. Накопление в ходе взаимной эволюции атмосферы и биосферы всего 1% кислорода создало условия для бурного развития современных форм жизни. При этом образовался озоновый экран - защита от космических лучей высоких энергий. Сокращение кислорода в атмосфере повлекло бы за собой замедление процессов жизнедеятельности. Утеря кислорода вызвала бы неизбежную замену аэробных форм жизни анаэробными.
Углекислого газа в атмосфере Земли содержится всего 0,03%. Но сегодня это предмет большого внимания и немалых тревог. При увеличении доли углекислого газа всего до 0,1% животные испытывают затруднения в дыхании, свыше 4% углекислоты в воздухе означает аварийную ситуацию. Даже совсем ничтожные (на тысячные доли процента) изменения содержания углекислого газа в атмосфере меняют ее проницаемость для отраженных от земной поверхности тепловых лучей.
Жизнь на Земле без атмосферы невозможна. Но она невозможна и без воды, и без питательных веществ, и без многого другого. Без пищи человек может прожить недели, без воды - дни, без воздуха - минуты, без атмосферной защиты - секунды.
Столь разительные отличия обоснованы, в частности, разной способностью организма запасать те или иные вещества. В среднем человек потребляет в сутки свыше 500 л кислорода, пропуская через легкие свыше 10 тыс. л (около 12 кг) воздуха и 1,5-2 кг воды и пищи.
Еще одно существенное обстоятельство. В ходе эволюции у животных выработались многоступенчатые и достаточно надежные системы защиты от ядовитых и иных неблагоприятных для организма веществ естественного происхождения (недоброкачественной воды и пищи, пыли, дыма и т.

п.). Поэтому и животный и человеческий организмы оказались полностью безоружными против того, чего нет в естественной среде их обитания,- против ядовитых газов без цвета, запаха и вкуса, которых немало в техногенных выбросах: оксида азота (II), свинца в выхлопах автомобилей, угарного газа (СО) и многих других соединений. В этих случаях наши дыхательные пути пропускают беспрепятственно и эликсир жизни, и смертельный яд, не имея средств различать их.

Атмосфера является последним слоем нашей планете, после которого начинается космос, и имеет несколько ключевых функций для сохранения жизни.

Происхождение и состав атмосферы

Состав атмосферы в истории планеты менялся многократно. Например, как об этом свидетельствуют ископаемые останки, раньше, несколько сотен миллионов лет назад, кислород в атмосфере не содержался, а количество углекислого газа было выше. Тогдашние животные при синтезе необходимых для жизни организмов использовали углекислый газ и брали из него углерод. Именно из-за этих примитивных организмов за миллионы лет попало огромное количество кислорода, и все живое начало дышать им.

В более древние времена, когда планета только образовалась, вода, которая сейчас находится в океанах, пребывала преимущественно в газообразном состоянии. Плотность атмосферы была тогда более высокой.

Главные функции атмосферы

Атмосфера имеет следующие ключевые функции:

  1. Защита Земли от ультрафиолетового излучения Солнца.
  2. Обмен веществ (например, участие в круговороте воды).
  3. Обеспечение кислородом живых организмов.
  4. Сохранение тепла, полученного от солнечных лучей.

Во сколько плотность атмосферы на Земле довольно высока, большая часть излучения Солнца, которая была бы смертельно для живых организмов, через неё не проходит. Именно это является одним из ключевых отличий нашей планеты от остальных. С другой стороны, атмосфера не образует над Землей сплошного покрова, как, например, на Венере, так что часть лучей через нее проникает и в результате мы получаем световой день.

Поскольку воздух является хорошим изолятором, полученное тепло, благодаря воздушным токам, равномерно распространяется по поверхности, а не экранируется обратно в космос. В природе это можно заметить, когда днем от полученных солнечных лучей поверхность нагревается, а ночью равномерно охлаждается. При этом разница температур не очень высока. Этим Земля отличается от Марса, где атмосфера разрежена и разница температур между днем и ночью велика и составляет около 80°C.

Атмосфера спасает всё живое на Земле, как от «звёздных осколков», так и от губительных ультрафиолетовых, рентгеновских, космических лучей.

Наличие воздушной оболочки придаёт нашему небу голубой цвет, т.к. молекулы основных элементов воздуха и различные примеси рассеивают, главным образом, лучи с короткой длиной волны, т.е. фиолетовые, синие и голубые. По мере удаления от поверхности Земли и уменьшения плотности атмосферы цвет неба темнеет, сначала становится густо-синим, а в стратосфере приобретает тёмно-синюю окраску.

Одной из особенностей атмосферы является её способность к самоочищению. Этот процесс происходит вследствие сухого и мокрого выпадения примесей, поглощения их земной поверхностью растениями, переработки бактериями, микроорганизмами и другими путями. Зелёные насаждения способствуют очищению воздуха от пыли, оксида углерода, диоксида серы и т.д. Одно взрослое дерево липы может в течение суток аккумулировать десятки килограммов диоксида серы, превращая его в безопасное вещество. Однако возможности природы ограничены.

Во всём мире проходят компании с целью убедить правительства сократить вырубку лесов. Уничтожение млн. кв. км леса означает уменьшение поступления кислорода в атмосферу и скопление большого количества углекислого газа, создающего эффект тепловой ловушки.

Атмосфера способна обеспечивать равновесие между продуцированием кислорода, потреблением углекислого газа зелёными растениями. Это позволяет сохранять замкнутый цикл, от которого зависит жизнедеятельность всех животных и растений планеты в течение сотен тысяч лет.

Однако теперь этому равновесию угрожают последствия производственной деятельности человека.

В результате всемирной индустриализации за последние 200 лет стали нарушаться пропорции в газовом составе атмосферы. Это напрямую угрожает сбалансированности процессов, протекающих в биосфере.

4.Загрязнение атмосферы

Увеличение концентрации в атмосфере отдельных компонентов ведёт к её загрязнению.

Изменение газового состава

Загрязнение

Увеличение содержания аэрозолей

4.1 Изменение газового состава

В настоящее время наблюдается повышение концентрации таких составляющих атмосферного воздуха, которые могут оказывать особенно негативное влияние на живые организмы.

СО 2 углекислый газ, не токсичен. За последние 100 лет содержание СО 2 в атмосфере выросло с 0, 027% до 0,03%. Ежегодный прирост составляет 0,0004% в год. Повышение концентрации углекислого газа связывают с глобальным изменением климата на Земле.

Углекислый газ относят к группе парниковых газов (сюда также включают метан (СН 4), оксиды азота). Эти газы образуются при сжигании различных ископаемых видов топлива, при проведении агротехнических мероприятий (например, при внесении азотных удобрений).

Парниковый эффект . Парниковые газы, всегда присутствующие в атмосфере, задерживают тепло солнечных лучей, отражённых от поверхности Земли. Если бы этот процесс прекратился, все воды планеты перешли бы в состояние льда, что привело бы к гибели все живые организмы. Однако, когда содержание «парниковых газов» увеличивается из-за антропогенного вмешательства, в атмосфере удерживается слишком большое количество тепла. Это приводит к потеплению климата во всём мире. За последнее столетие средняя температура на планете увеличилась на полградуса Цельсия. Прогнозируется дальнейшее потепление к середине нынешнего века на 1 - 4,5 градусов.

Сейчас в атмосфере увеличивается доля примесей, которые оказывают различное токсическое действие на человека.

СО – оксид углерода, токсичен. Без цвета и запаха. Образуется при работе энергоустановок, содержится в выбросах двигателей внутреннего сгорания. Контактируя с человеческим организмом, соединяется с гемоглобином в крови. Гемоглобин становится неспособным переносить кислород к тканям, т.е. воздействует на нервную сердечно-сосудистую систему – вызывает удушье. (Например, при воздействии в течение 2-3 часов на организм концентрации 200-220 мг/м 3 наступает отравление СО). Ежегодные выбросы в атмосферу составляют не менее 1250 млн. т.

S О 2 - диоксид серы, токсичен. Бесцветный газ с острым запахом. Образуется в результате сжигания серосодержащего топлива или в результате переработки сернистых руд. Раздражает слизистые оболочки глаз и дыхательных путей. При концентрации около 50 мг/м 3 образует последовательно H 2 SO 3 и H 2 SO 4 . При содержании в воздухе SO 2 от 0,23 мг/м 3 происходит усыхание хвойных деревьев и при концентрации от 0,5 мг/м 3 - лиственных. Ежегодные выбросы в атмосферу составляют около 170 млн. т. в год.

NO X (NO, N 2 O 5 , NO 2 , N 2 O 3 ) – оксиды азота. Без цвета и запаха. Очень ядовиты. При наличии в воздухе оксидов азота токсичность СО возрастает. Источники – предприятия, производящие азотную кислоту, азотные удобрения, целлулоид. В атмосферу поступает ежегодно до 20 млн. т. оксидов азота.

Углеводороды – пары бензина, пентан, гексан и т.д. Обладают наркотическим действием. К канцерогенным веществам относят бенз(а)пирен С 20 Н 12 , который образуется в процессах пиролиза угля углеводородных топлив (при температуре более 600 градусов по Цельсию)

Необходимо отметить повышенное содержание следующих примесей, которые имеют антропогенное происхождение: сероводород и сероуглерод, соединения фтора, соединения хлора и т.д.

Кислотные дожди . Содержат растворы серной и азотной кислот. Образуются в результате реакции оксидов серы и оксидов азота с водяными парами атмосферы. Это превращает выпадающие дожди в слабые растворы кислот.

Кислотные дожди убивают памятники архитектуры. Твёрдый мрамор (CаО и СО 2)реагирует с раствором серной кислоты и превращается в гипс (СаSО 4). Исторические памятники Греции, Рима, простояв тысячелетия, разрушаются на глазах.

В местах выпадения кислотных дождей погибают растения, животные. Известны случаи, когда кислотные дожди уничтожали целые леса. Кислотные дожди вливаются в водоёмы, реки, убивая даже мельчайшие формы жизни.

4.2 Повышение плотности аэрозоля

Аэрозоли – взвешенные частицы, присутствующие в атмосфере. Повышение концентрации аэрозоля может иметь естественный характер. Естественное загрязнение атмосферы происходит при извержении вулканов, при лесных, торфяных пожарах, выветривании пород. Происходит выпадение космической пыли - около 5 млн. т в год.

Производственные процессы, являющиеся причиной антропогенного запыления атмосферы, оказывают большое влияние на климат Земли.

Взвешенные вещества сажи, дыма, интенсивно поглощают солнечный свет, увеличивают количество ядер конденсации и тем самым облачность атмосферы. Количество солнечных дней снижается до 25 – 50%. Размер аэрозолей колеблется в пределах 11 – 51 мкм, период нахождения во взвешенном состоянии мельчайших аэрозолей составляет от нескольких дней до нескольких лет. Пример: Источником атмосферного аэрозоля является сажа, зола, которая образуется при неполном сгорании топлива. Сажа – высокодисперсный нетоксичный порошок, на 95% состоящий из углерода. Обладает большой абсорбционной способностью по отношению к тяжёлым углеводородам. Это делает сажу очень опасной для человека.

5. Озоновый экран Земли

Озоновый экран, расположенный в стратосфере, защищает нас путём поглощения большей части (2/3) солнечных ультрафиолетовых лучей.

Внутри озонового слоя происходит непрерывный переход из одной формы кислорода в другую. Молекулы О 2 расщепляются на отдельные атомы кислорода (О). Эти атомы соединяются с молекулами кислорода, образуя озон О 3 . Озон снова распадается на кислород и О 2 и отдельные атомы. Необходимую энергию даёт солнечное излучение. Поглощая эту энергию в основном в ультрафиолетовой части спектра, озоновый слой не даёт ультрафиолетовому излучению достигать Земли.

      Разрушение озонового слоя

Впервые в 1985 г. исследователи Антарктиды обнаружили озоновую дыру над частью южного полушария. Сейчас озоновые дыры обнаружили и над северным полушарием.

Выяснилось, что разрушение озона в основном вызвано присутствием химических соединений - искусственно синтезированных хлорфторуглеродов (ХФУ). Которые сравнительно недавно получили широкое распространение. Они нашли применение в бытовой химии, использовались в холодильных установках при производстве пенопласта и т.д.

Для человека эти соединения не опасны. Однако, предполагается, что, поднимаясь вверх в атмосфере, эти газы достигают озонового слоя и разрушают его. ХФУ попадают в верхние слои атмосферы в качестве примесей. Под действием солнечного света их молекулы распадаются с высвобождением атомов хлора. Хлор «отбирает» один атом кислорода у озона, превращая его в обычный кислород. Один атом хлора может проделать это со множеством (до 100000) молекул озона.

Международное сообщество принимает некоторые меры по защите озонового слоя.

1987г. – правительства 56 стран обязались сократить производство ХФУ.

1996г. – промышленно развитые страны полностью прекратили производство фреона, галлонов и тетрахлорида углерода.

2010г. - к этому времени производство ХФУ обязаны прекратить развивающиеся страны.

Международный экологический фонд предоставил Москве, Киеву безвозмездную помощь для поэтапного сокращения потребления ОРВ. Деньги направлены предприятиям, производящим аэрозоли, холодильную технику для перехода к использованию углеродного аэрозольного пропелента (УАП).

Межведомственные комиссии по охране озонового слоя созданы на правительственном уровне.

    Определение степени загрязнённости атмосферы

В большинстве стран критерием качества воздушного бассейна является предельно допустимая концентрация (ПДК) загрязняющего вещества для атмосферного воздуха, определяемая количеством вещества, находящегося в 1 м 3 воздуха, которое не оказывает вредного влияния на здоровье людей, постоянно его вдыхающих.

Опасность загрязнения атмосферы определяют следующим образом:

j = c i / ПДК i ,

где с i – физическая концентрация загрязняющего вещества в приземном слое атмосферы (пространство до 2-х м над поверхностью земли), замеренная или рассчитанная в мг/м, ПДК – максимально разовая предельно допустимая концентрация загрязняющего вещества в мг/м.

Если значениеj 1, то опасности загрязнения нет, если же j больше 1, то опасность загрязнения существует.

Например, для сернистого газа (SO 2) ПДК в атмосфере населённых пунктов – 0,5 мг/м 3 ; диоксида азота (NO 2) – 0,085 мг/м 3

При совместном присутствии в атмосфере нескольких веществ, обладающих эффектом суммации (т.е. взаимно усиливающих воздействие на организм человека), опасность загрязнения определяется из выражения:

j = c 1 / ПДК 1 + c 2 / ПДК 2 +… c i / ПДК i ,

где с 1 ,с 2 ,…, с 3 – фактические концентрации веществ, в мг/м; ПДК 1 , ПДК 2 , …., ПДК 3 – максимально разовые предельно допустимые концентрации для этих веществ в мг/ м 3

Это выражение используется при установлении качества воздуха, если в нём одновременно присутствуют такие вещества, как, например, фенол и ацетон, сернистый газ и диоксид азота, этилен, пропилен, бутилен.

Непревышение ПДК должно обеспечиваться за счёт ограничения интенсивности выбросов загрязняющих веществ. Важным фактором, влияющим на концентрацию загрязняющих веществ в атмосфере, является её способность к рассеиванию и самоочищению. Этот процесс происходит вследствие сухого и мокрого выпадения примесей, поглощению их земной поверхностью, переработки бактериями, микроорганизмами и другими путями.

    Способы и методы очистки выбросов в атмосферу от вредных веществ

Строительство очистных сооружений - важная мера по предотвращению загрязнённости атмосферы.

Способы очистки выбросов в атмосферу можно объединить в следующие группы:

Очистка от выбросов пыли и аэрозолей вредных веществ;

Очистка выбросов от вредных газообразных веществ;

Снижение загрязнённости атмосферы выхлопными газами от ДВС транспортных средств и стационарных установок;

Для очистки выбросов от вредных веществ используются механические, физические, химические и комбинированные методы.

Механические методы базируются на использовании сил гравитации, инерции, центробежных сил и т.д.

Физические методы базируются на использовании электрических и электростатических полей, охлаждении, конденсации и т.д.

В химических методах используются реакции окисления, нейтрализации и т.д.

В физико-химических методах используются принципы сорбции (абсорбции, хемосорбции, адсорбции), коагуляции и флотации.

Рассмотрим некоторые из физико-химических методов:

Метод абсорбции :

Этот метод заключается в разделении газовоздушной смеси на составные части путём поглощения одного или нескольких компонентов этой смеси абсорбентом (поглотителем) с образованием раствора. В качестве абсорбента используется жидкость, способная поглощать вредные примеси. При соприкосновении жидких и газообразных веществ на поверхности обеих фаз образуется жидкостная и газовая плёнки.

Растворимый в жидкости компонент газовоздушной смеси проникает путём диффузии сначала через газовую плёнку, потом через жидкостную и поступает в верхние слои абсорбента. Например, для удаления из выбросов ароматических углеводородов, водяных паров используется серная кислота.

Метод хемосорбции:

Основан на поглощении газов и паров твёрдыми или жидкими поглотителями с образованием химических соединений.

Метод адсорбции:

Основан на свойствах некоторых твёрдых тел с ультрамикроскопической структурой селективно (избирательно) извлекать и концентрировать на своей поверхности отдельные компоненты из газовой смеси. Наиболее часто в качестве адсорбента используется активированный уголь, активированный глинозём, активированный оксид AL и прочие комплексные оксиды.

Каталитический метод:

Этим методом превращают токсичные компоненты промышленных выбросов в вещества безвредные или менее вредные для окружающей среды путём введения в систему дополнительных веществ, называемых катализаторами. Каталитические методы основаны на взаимодействии удаляемых веществ со специально добавляемым в смесь веществом на твёрдых катализаторах.