» »

Из чего состоит нерв. Строение периферической нервной системы

18.09.2020

ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА. СПИННОМОЗГОВЫЕ НЕРВЫ

Строение нервов

Развитие спинномозговых нервов

Образование и ветвление спинномозговых нервов

Закономерности хода и ветвления нервов

Нервная система человека подразделяется на центральную, периферическую и авто-

номную части. Периферическая часть нервной системы представляет собой совокуп-

ность спинномозговых и черепных нервов. К ней относятся образуемые нервами ганглии и сплетения, а также чувствительные и двигательные окончания нервов. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, периферическая часть нервной системы объединяет всœе нервные образования, лежащие вне спинного и головного мозга. Такое объединœение в известной мере условно, так как эфферентные волокна, входящие в состав периферических нервов, являются отростками нейронов, тела которых находятся в ядрах спинного и головного мозга. С функциональной точки зрения периферическая часть нервной системы состоит из проводников, соединяющих нервные центры с рецепторами и рабочими органами. Анатомия периферических нервов имеет большое значение для клиники, как основа для диагностики и лечения заболеваний и повреждений этого отдела нервной системы.

Периферические нервы состоят из волокон, имеющих различное строение и неодина-

ковых в функциональном отношении. Учитывая зависимость отналичия или отсутствия миелиновой оболочки волокна бывают миелиновые (мякотные) или безмиелиновые (безмякотные) (Рис. 1). По диаметру миелиновые нервные волокна подразделяются на тонкие (1-4 мкм), средние (4-8 мкм) и толстые (более 8 мкм) (Рис. 2). Существует прямая зависимость между толщиной волокна и скоростью проведения нервных импульсов. В толстых миелиновых волокнах скорость проведения нервного импульса составляет примерно 80-120 м/с, в средних – 30-80 м/с, в тонких – 10-30 м/с. Толстые миелиновые волокна являются преимущественно двигательными и проводниками проприоцептивной чувствительности, средние по диаметру волокна проводят импульсы тактильной и температурной чувствительности, а тонкие – болевой. Безмиелиновые волокна имеют небольшой диаметр – 1-4 мкм и проводят импульсы со скоростью 1-2 м/с (Рис. 3). Οʜᴎ являются эфферентными волокнами вегетативной нервной системы.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, по составу волокон можно дать функциональную характеристику нерва. Среди нервов верхней конечности наибольшее содержание мелких и средних миелиновых и безмиелиновых волокон имеет срединный нерв, а наименьшее число их входит в состав лучевого нерва, локтевой нерв занимает в этом отношении среднее положение. По этой причине при повреждении срединного нерва бывают особенно выражены болевые ощущения и вегетативные расстройства (нарушения потоотделœения, сосудистые изменения, трофические расстройства). Соотношение в нервах миелиновых и безмиелиновых, тонких и толстых волокон индивидуально изменчиво. К примеру, количество тонких и средних миелиновых волокон в срединном нерве может у разных людей колебаться от 11 до 45%.

Нервные волокна в стволе нерва имеют зигзагообразный (синусоидальный) ход, что

предохраняет их от перерастяжения и создает резерв удлинœения в 12-15% от их первоначальной длины в молодом возрасте и 7-8% – в пожилом возрасте (Рис. 4).

Нервы обладают системой собственных оболочек (Рис. 5). Наружная оболочка, эпинœеврий, покрывает нервный ствол снаружи, отграничивая его от окружающих тканей, и состоит из рыхлой неоформленной соединительной ткани. Рыхлая соединительная ткань эпинœеврия выполняет всœе промежутки между отдельными пучками нервных волокон.

В эпинœеврии в большом количестве находятся толстые пучки коллагеновых волокон,

идущих преимущественно продольно, клетки фибробластического ряда, гистиоциты и жировые клетки. При изучении седалищного нерва человека и некоторых животных установлено, что эпинœеврия состоит из продольных, косых и циркулярных коллагеновых волокон, имеющих зигзагообразный извилистый ход с периодом 37-41 мкм и амплитудой около 4 мкм. Следовательно, эпинœеврия – очень динамичная структура, которая защищает нервные волокна при растяжении и изгибе.

Нет единого мнения о природе эластических волокон эпинœеврия. Одни авторы считают, что в эпинœеврии отсутствуют зрелые эластические волокна, но обнаружены два вида близких к эластину волокон: окситалановые и элауниновые, которые располагаются параллельно оси нервного ствола. Другие исследователи считают их эластическими волокнами. Жировая ткань является составной частью эпинœеврия.

При исследовании черепных нервов и ветвей крестцового сплетения взрослых людей

установлено, что толщина эпинœеврия колеблется в пределах от 18-30 до 650 мкм, но

чаще составляет 70-430 мкм.

Эпинœеврий – в основном питающая оболочка. В эпинœеврии проходят кровеносные и

лимфатические сосуды, vasa nervorum , которые проникают отсюда в толщу нервного

ствола (Рис. 6).

Следующая оболочка, перинœеврий, покрывает пучки волокон, из которых состоит нерв Она является механически наиболее прочной. При световой и электронной

микроскопии установлено, что перинœеврий состоит из нескольких (7-15) слоев плоских клеток (перинœеврального эпителия, нейротелия) толщиной от 0.1 до 1.0 мкм, между которыми располагаются отдельные фибробласты и пучки коллагеновых волокон. Установлено, что пучки коллагеновых волокон имею в перинœеврии плотное расположение и ориентированы как в продольном, так и концентрическом направлениях. Тонкие коллагеновые волокна образуют в перинœеврии двойную спиральную систему. Причем волокна образуют в перинœеврии волнистые сети с периодичностью около 6 мкм. В перинœеврии найдены элауниновые и окситалановые волокна, ориентированные преимущественно продольно, причем первые в основном локализуются в поверхностном его слое, а вторые – в глубоком слое.

Толщина перинœеврия в нервах с многопучковой структурой находится в прямой зависимости от величины покрываемого им пучка: вокруг мелких пучков не превышает 3-5 мкм, крупные пучки нервных волокон покрываются перинœевральным футляром толщиной от 12-16 до 34-70 мкм. Данные электронной микроскопии свидетельствуют, что перинœеврий имеет гофрированную, складчатую организацию. Перинœеврию придается большое значение в барьерной функции и обеспечении прочности нервов. Перинœеврий, внедряясь в толщу нервного пучка, образует там соединительнотканные перегородки толщиной 0.5-6.0 мкм, которые делят пучок на части. Подобная сегментация пучков чаще наблюдается в поздних периодах онтогенеза.

Перинœевральные влагалища одного нерва соединяются с перинœевральными влагали-

щами сосœедних нервов, и через эти соединœения происходит переход волокон из одного нерва в другой. В случае если учесть всœе эти связи, то периферическую нервную систему верхней или нижней конечности можно рассматривать как сложную систему связанных между собой перинœевральных трубок, по которым осуществляется переход и обмен нервных волокон как между пучками в пределах одного нерва, так и между сосœедними нервами. Самая внутренняя оболочка, эндоневрий, покрывает тонким соединительнотканным

футляром отдельные нервные волокна (Рис. 8). Клетки и внеклеточные структуры эн-

доневрия вытянуты и ориентированы преимущественно по ходу нервных волокон. Количество эндоневрия внутри перинœевральных футляров по сравнению с массой нервных волокон невелико.

Нервные волокна сгруппированы в отдельные пучки различного калибра. У разных авторов существуют различные определœения пучка нервных волокон в зависимости от позиции, с которой эти пучки рассматриваются: с точки зрения нейрохирургии и микрохирургии или с точки зрения морфологии. Классическим определœением нервного пучка является группа нервных волокон, ограниченная от других образований нервногоствола перинœевральной оболочкой. И этим определœением руководствуются при исследовании морфологи. При этом при микроскопическом исследовании нервов часто наблюдаются такие состояния, когда несколько групп нервных волокон, прилежащих друг к другу, имеют не только собственные перинœевральные оболочки, но и окружены об-

щим перинœеврием. Эти группы нервных пучков часто бывают видны при макроскопическом исследовании поперечного среза нерва во время нейрохирургического вмешательства. И эти пучки чаще всœего описываются при клинических исследованиях. Из-за различного понимания строения пучка происходят в литературе противоречия при описании внутриствольного строения одних и тех же нервов. В связи с этим ассоциации нервных пучков, окруженные общим перинœеврием, получили название первичных пучков, а более мелкие, их составляющие, – вторичных пучков. На поперечном срезе нервов человека соединительнотканные оболочки (эпинœеврий перинœеврий) занимают значительно больше места (67-84%), чем пучки нервных волокон. Показано, что количество соединительной ткани зависит от числа пучков в нерве.

Ее значительно больше в нервах с большим количеством мелких пучков, чем в нервах с немногими крупными пучками.

Учитывая зависимость отстроения пучков выделяют две крайние формы нервов: малопучко-

вую и многопучковую. Первая характеризуется небольшим количеством толстых пучков и слабым развитием связей между ними. Вторая состоит их множества тонких пучков с хорошо развитыми межпучковыми соединœениями.

Когда количество пучков небольшое, пучки имеют значительные размеры, и наоборот.

Малопучковые нервы отличаются сравнительно небольшой толщиной, наличием не-

большого количества крупных пучков, слабым развитием межпучковых связей, частым расположением аксонов внутри пучков. Многопучковые нервы отличаются большей толщиной и состоят из большого количества мелких пучков, в них сильно развиты межпучковые связи, аксоны располагаются в эндоневрии рыхло.

Толщина нерва не отражает количества содержащихся в нем волокон, и не существует закономерностей расположения волокон на поперечном срезе нерва. При этом установлено, что в центре нерва пучки всœегда тоньше, на периферии – наоборот. Толщина пучка не характеризует количества заключенных в нем волокон.

В строении нервов установлена четко выраженная асимметрия, то есть неодинаковое

строение нервных стволов на правой и левой сторонах тела. К примеру, диафрагмаль-

ный нерв имеет слева большее количество пучков, чем справа, а блуждающий нерв –

наоборот. У одного человека разница в количестве пучков между правым и левым срединными нервами может варьировать от 0 до 13, но чаще составляет 1-5 пучков. Разница в количестве пучков между срединными нервами разных людей равняется 14-29 и с возрастом увеличивается. В локтевом нерве у одного и того же человека разница между правой и левой сторонами в количестве пучков может колебаться от 0 до 12, но чаще составляет также 1-5 пучков. Различие в количестве пучков между нервами разных людей достигает 13-22.

Разница между отдельными субъектами в количестве нервных волокон колеблется в

срединном нерве от 9442 до 21371, в локтевом нерве – от 9542 до 12228. У одного и того же человека разница между правой и левой стороной варьирует в срединном нерве от 99 до 5139, в локтевом нерве – от 90 до 4346 волокон.

Источниками кровоснабжения нервов являются сосœедние близлежащие артерии и их

ветви (Рис. 9). К нерву обычно подходят несколько артериальных ветвей, причем ин-

тервалы между входящими сосудами варьируют в крупных нервах от 2-3 до 6-7 см, а в седалищном нерве – до 7-9 см. Вместе с тем, такие крупные нервы, как срединный и седалищный, имеют собственные сопровождающие артерии. В нервах, имеющих большое количество пучков, в эпинœеврии содержится много кровеносных сосудов, причем они имеют сравнительно малый калибр. Наоборот, в нервах с небольшим количеством пучков сосуды одиночные, но значительно более крупные. Артерии, питающие нерв, в эпинœеврии Т-образно делятся на восходящую и нисходящую ветви. Внутри нервов артерии делятся до ветвей 6-го порядка. Сосуды всœех порядков анастомозируют между собой, образуя внутриствольные сети. Эти сосуды играют значительную роль в развитии коллатерального кровообращения при выключении крупных артерий. Каждая артерия нерва сопровождается двумя венами.

Лимфатические сосуды нервов находятся в эпинœеврии. В перинœеврии между его слоями образуются лимфатические щели, сообщающиеся с лимфатическими сосудами эпинœеврия и эпинœевральными лимфатическими щелями. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, по ходу нервов может распространяться инфекция. Из больших нервных стволов обычно выходят несколько лимфатических сосудов.

Оболочки нервов иннервируются ветвями, отходящими от данного нерва. Нервы нервов имеют в основном симпатическое происхождение и по функции являются сосудодвигательными.

Представляет собой организованный набор клеток, специализирующихся на проведении электрических сигналов.

Нервная система состоит из нейронов и глиальных клеток. Функция нейронов заключается в координации действий с помощью химических и электрических сигналов, посылаемых из одного места в другое в организме. Большинство многоклеточных животных имеют нервные системы с похожими основными характеристиками.

Содержание:

Нервная система захватывает стимулы из окружающей среды (внешние стимулы) или сигналы от одного и того же организма (внутренние стимулы), обрабатывает информацию и генерирует различные реакции в зависимости от ситуации. В качестве примера мы можем рассмотреть животное, которое через клетки, чувствительные к свету сетчатки, улавливает близость другого живого существа. Эта информация передается зрительным нервом в мозг, который обрабатывает его и излучает нервный сигнал, и вызывает сокращение определенных мышц через двигательные нервы, чтобы двигаться в направлении, противоположном потенциальной опасности.

Функции нервной системы

Нервная система человека контролирует и регулирует большинство функций организма, от раздражителей через сенсорные рецепторы до моторных действий.

Она состоит из двух основных частей: центральной нервной системы (ЦНС) и периферической нервной системы (ПНС). ЦНС состоит из мозга и спинного мозга.

ПНС образована нервами, которые соединяют ЦНС с каждой частью тела. Нервы, передающие сигналы из мозга, называются двигательными или эфферентными нервами, а нервы, передающие информацию от тела к ЦНС, называются сенсорными или афферентными.

На клеточном уровне нервная система определяется наличием клеточного типа, называемого нейроном, также известным как «нервная клетка». Нейроны имеют специальные структуры, которые позволяют им быстро и точно отправлять сигналы другим клеткам.

Связи между нейронами могут образовывать цепи и нейронные сети, которые генерируют восприятие мира и определяют поведение. Наряду с нейронами нервная система содержит другие специализированные клетки, называемые глиальными клетками (или просто глиями). Они обеспечивают структурную и метаболическую поддержку.

Неисправность нервной системы может возникать в результате генетических дефектов, физического повреждения, вследствие травмы или токсичности, инфекции или просто путем старения.

Структура нервной системы

Нервная система (НС) состоит из двух хорошо дифференцированных подсистем, с одной стороны центральной нервной системы, а с другой — периферической нервной системы.

Видео: Нервная система человека. Введение: основные понятия, состав и строение


На функциональном уровне периферическая нервная система (ПНС) и соматическая нервная система (СНС) дифференцируются в периферической нервной системе. СНС участвует в автоматическом регулировании внутренних органов. ПНС отвечает за захват сенсорной информации и разрешение добровольных движений, таких как рукопожатие или письмо.

Периферическая нервная система состоит в основном из следующих структур: ганглии и черепных нервов.

Вегетативная нервная система


Вегетативная нервная система

Вегетативная нервная система (ВНС) разделена на симпатическую и парасимпатическую системы. ВНС участвует в автоматическом регулировании внутренних органов.

Вегетативная нервная система вместе с нейроэндокринной системой отвечают за регулирование внутреннего баланса нашего организма, снижение и повышение уровня гормонов, активацию внутренних органов и т. д.

Для этого она передает информацию от внутренних органов в ЦНС через афферентные пути и излучает информацию от ЦНС к мускулатуре.

Она включает сердечную мускулатуру, гладкую кожу (которая снабжает волосяные фолликулы), гладкость глаз (которая регулирует сокращение и расширение зрачка), гладкость кровеносных сосудов и гладкость стенок внутренних органов (желудочно-кишечная система, печень, поджелудочная железа, респираторная система, репродуктивные органы, мочевой пузырь …).

Эфферентные волокна организованы, образуя две различные системы, называемые симпатической и парасимпатической системой.

Симпатическая нервная система в основном ответственна за то, чтобы подготовить нас к действию, когда мы ощущаем значительный стимул, активируя одну из автоматических реакций (например убегать или атаковать).

Парасимпатическая нервная система , в свою очередь, поддерживает оптимальную активацию внутреннего состояния. Увеличение или уменьшение активации по мере необходимости.

Соматическая нервная система

Соматическая нервная система отвечает за захват сенсорной информации. Для этой цели она использует сенсорные датчики, распределенные по всему телу, которые распределяют информацию в ЦНС и таким образом переносят от ЦНС на мышцы и органы.

С другой стороны, это часть периферической нервной системы, связанная с добровольным контролем телесных движений. Она состоит из афферентных или сенсорных нервов, эфферентных или двигательных нервов.

Афферентные нервы ответственны за передачу ощущения организма центральной нервной системе (ЦНС). Эфферентные нервы отвечают за отправку сигналов от ЦНС на тело, стимулируя сокращение мышц.

Соматическая нервная система состоит из двух частей:

  • Спинномозговые нервы: появляются из спинного мозга и состоят из двух ветвей: чувствительного афферента и другого эфферентного двигателя, поэтому это смешанные нервы.
  • Черепные нервы: посылает сенсорную информацию с шеи и головы в центральную нервную систему.

Затем оба объясняются:

Черепная нервная система

Есть 12 пар черепных нервов, которые возникают из головного мозга и ответственны за передачу сенсорной информации, контроль над некоторыми мышцами и регулирование некоторых желез и внутренних органов.

I. Ольфакторный нерв. Он получает обонятельную сенсорную информацию и переносит ее на обонятельную луковицу, расположенную в мозге.

II. Оптический нерв. Он получает визуальную сенсорную информацию и передает ее в мозговые центры зрения через зрительный нерв, проходя через хиазм.

III. Внутренний окулярный моторный нерв. Он отвечает за контроль движений глаз и регулирование дилатации и сокращения зрачка.

IV Внутривенно- трехолевый нерв. Он отвечает за контроль движений глаз.

V. Тригеминальный нерв. Он получает соматосенсорную информацию (например, тепло, боль, текстуру …) от сенсорных рецепторов лица и головы и контролирует мышцы жевания.

VI. Наружный моторный нерв глазного нерва. Контроль движений глаз.

VII. Лицевой нерв. Получает информацию о вкусе языка (те, что расположены в средней и предыдущей частях) и соматосенсорная информация о ушах, и контролирует мышцы, необходимые для выполнения мимики.

VIII. Вестибулокохлеарный нерв. Получает слуховую информацию и контролирует баланс.

IX. Глоссафоаргиальный нерв. Получает информацию о вкусе из самой задней части языка, соматосенсорную информацию о языке, миндалинах, глотке и контролирует мышцы необходимые для проглатывания (глотания).

Х. Вагусный нерв. Получает конфиденциальную информацию от желез пищеварения и частоты сердечных сокращений и отправляет информацию органам и мышцам.

XI. Спинной аксессуарный нерв. Управляет мышцами шеи и головы, которые используются для движения.

XII. Гипоглоссальный нерв. Контролирует мышцы языка.

Спинномозговые нервы соединяют органы и мышцы спинного мозга. Нервы отвечают за передачу информации о сенсорных и висцеральных органах в мозг и передают приказы костного мозга на скелетную и гладкую мускулатуру и железы.

Эти соединения управляют рефлекторными действиями, которые выполняются так быстро и бессознательно, потому что информация не должна обрабатываться мозгом до выдачи ответа, она напрямую контролируется мозгом.

Всего имеется 31 пара спинномозговых нервов, которые выходят в двухстороннем порядке из костного мозга через пространство между позвонками, называемыми внутрипозвонковыми отверстиями.

Центральная нервная система

Центральная нервная система состоит из мозга и спинного мозга.

На нейроанатомическом уровне в ЦНС можно выделить два типа веществ: белый и серый. Белое вещество образовано аксонами нейронов и структурного материала, а серое вещество образовано нейронной сомой, где расположен генетический материал.

Это различие является одним из оснований, на которых основан миф, в котором мы используем только 10% нашего мозга, поскольку мозг состоит из примерно 90% белого вещества и всего 10% серого вещества.

Но хотя серое вещество, по-видимому, состоит из материала, который только служит для соединения, сегодня известно, что число и способ, с помощью которых производятся соединения, заметно влияют на функции мозга, поскольку, если структуры находятся в идеальном состоянии, но между ними нет связей, они не будут работать правильно.

Мозг состоит из множества структур: коры головного мозга, базальных ганглиев, лимбической системы, промежуточного мозга, ствола и мозжечка.


Кора головного мозга

Кору головного мозга можно разделить анатомически на доли, разделенные бороздками. Наиболее признанными являются лобные, теменные, временные и затылочные, хотя некоторые авторы утверждают, что есть также лимбическая доля.

Кора делится на два полушария, правого и левого, так что половинки присутствуют симметрично в обоих полушариях, с правой лобной долей и левой долей, правой и левой теменной долей и т. д.

Полушария головного мозга разделены межполушарной трещиной, а доли разделены различными канавками.

Кору головного мозга также можно отнести к функциям сенсорной коры, коры ассоциации и лобных долей.

Сенсорная кора получает сенсорную информацию от таламуса, которая получает информацию через сенсорные рецепторы, за исключением первичной обонятельной коры, которая получает информацию непосредственно от сенсорных рецепторов.

Соматосенсорная информация достигает первичной соматосенсорной коры, расположенной в теменной доле (в постцентральной извилине).

Каждая сенсорная информация достигает определенной точки коры, образующей чувственный гомункул.

Как видно, области мозга, соответствующие органам, не соответствуют тому же порядку, в котором они расположены в организме и они не имеют пропорционального отношения размеров.

Крупнейшими корковыми областями, по сравнению с размерами органов, являются руки и губы, так как в этой области мы имеем высокую плотность сенсорных рецепторов.

Визуальная информация достигает первичной зрительной коры головного мозга, расположенной в затылочной доле (в бороздке) и эта информация имеет ретинотопическую организацию.

Первичная слуховая кора находится в височной доле (область 41 Бродмана), ответственная за получение слуховой информации и создание тонотопической организации.

Первичная кора вкуса расположена в передней части крыльчатки и в передней оболочке, а обонятельная кора расположена в коре пириформ.

Кора ассоциации включает первичный и вторичный. Первичная корковая ассоциация находится рядом с сенсорной корой и объединяет все характеристики воспринимаемой сенсорной информации, такие как цвет, форма, расстояние, размер и т. д. визуального стимула.

Корень вторичной ассоциации находится в теменной крышечке и обрабатывает интегрированную информацию, чтобы отправить ее в более «продвинутые» структуры, такие как лобные доли. Эти структуры помещают ее в контекст, дают ей смысл и делают ее сознательной.

Лобные доли, как мы уже упоминали, отвечают за обработку информации высокого уровня и интеграцию сенсорной информации с двигательными действиями, которые выполняются так, чтобы они соответствовали воспринимаемым стимулом.

Кроме того, они выполняют ряд сложных, обычно человеческих задач, называемых исполнительными функциями.

Базальные ганглии

Базальные ганглии (от греческого ганглия, «конгломерат», «узел», «опухоль») или базальные ядра представляют собой группу ядер или масс серого вещества (скопления тел или нейронных клеток), которые находятся у основания мозга между восходящими и нисходящими путями белого вещества и верхом на стволе мозга.

Эти структуры связаны друг с другом и вместе с корой головного мозга и ассоциацией через таламус, их основная функция — контролировать произвольные движения.

Лимбическая система образована подкорковыми структурами, то есть ниже коры головного мозга. Среди подкорковых структур, которые это делают, выделяется миндалина, а среди кортикальных — гиппокамп.

Амигдала имеет миндалевидную форму и состоит из ряда ядер, которые испускают и получают афференты и выводы из разных регионов.


Эта структура связана с несколькими функциями, такими как эмоциональная обработка (особенно негативные эмоции) и ее влияние на процессы обучения и памяти, внимание и некоторые механизмы восприятия.

Гипокамп, или гипокампальное образование, представляет собой кортикальную область, похожую на морского конька (отсюда и название гиппокампа от греческого hypos: лошадь и монстр моря) и сообщается в двух направлениях с остальной частью мозговой коры и с гипоталамусом.


Гипоталамус

Эта структура особенно важна для обучения, поскольку она отвечает за консолидацию памяти, то есть превращение краткосрочной или непосредственной памяти в долгосрочную память.

Промежуточный мозг

Промежуточный мозг расположен в центральной части мозга и состоит в основном из таламуса и гипоталамуса.

Таламус состоит из нескольких ядер с дифференцированными связями, что очень важно при обработке сенсорной информации, поскольку он координирует и регулирует информацию, поступающую из спинного мозга, ствола и самого мозга.

Таким образом, вся сенсорная информация проходит через таламус до достижения сенсорной коры (за исключением обонятельной информации).

Гипоталамус состоит из нескольких ядер, которые широко связаны между собой. В дополнение к другим структурам как центральная нервная система, так и периферическая, таких как кора, спинной мозг, сетчатка и эндокринная система.

Его основная функция заключается в интеграции сенсорной информации с другими типами информации, например, эмоциональной, мотивационной или прошлого опыта.

Ствол мозга расположен между промежуточным мозгом и спинным мозгом. Он состоит из продолговатого мозга, выпуклости и мезенцефалина.

Эта структура получает большую часть периферийной моторной и сенсорной информации, и ее основная функция заключается в интеграции сенсорной и моторной информации.

Мозжечок

Мозжечок находится в задней части черепа и имеет форму небольшого мозга, с корой на поверхности и с белым веществом внутри.

Он получает и интегрирует информацию в основном из коры головного мозга. Его основными функциями являются координация и адаптация движений к ситуациям, а также поддержание баланса.

Спинной мозг

Спинной мозг переходит из мозга во второй поясничный позвонок. Его основная функция заключается в том, чтобы связать ЦНС с СНС, например принимая двигательные команды мозга к нервам, которые иннервируют мышцы, чтобы они дали моторный отклик.

Кроме того, он может инициировать автоматические ответы, получая какую-то очень важную сенсорную информацию такую как укол или жжение.

К периферическим нервам относят черепные и спинномозговые нервы, соединяющие центральную нервную систему (ЦНС) с периферическими органами и тканями. Спинномозговые нервы формируются при слиянии вентральных (передних) и дорсальных (задних) нервных корешков в месте их выхода из позвоночного канала. Задние нервные корешки образуют утолщения - спинальные ганглии (или задние корешковые ганглии). Спинномозговые нервы относительно короткие - их длина составляет менее 1 см. Проходя через межпозвоночное отверстие, спинномозговые нервы делятся на вентральную (переднюю) и дорсальную (заднюю) ветви.

Задняя ветвь обеспечивает иннервацию мышц, выпрямляющих позвоночник, а также кожи туловища в этой области. Передняя ветвь иннервирует мышцы и кожу передней части туловища; кроме того, от нее отходят чувствительные волокна к париетальной плевре и париетальной брюшине.

Передняя ветвь также дает начало ветвям шейного, плечевого и пояснично-крестцового нервных сплетений. Таким образом, значение понятия «ветвь» может изменяться в зависимости от контекста. (Подробное описание нервных сплетений представлено в главах, посвященных анатомии.)

Грудной сегмент спинного мозга и нервные корешки.
Стрелками указано направление проведения импульса. Зеленым цветом обозначено симпатическое нервное волокно.

Периферические нейроны частично расположены в ЦНС. Двигательные (эфферентные) нервные волокна, иннервирующие скелетную мускулатуру, начинаются от мультиполярных а- и у-нейронов, расположенных в переднем роге серого вещества. Строение этих нейронов соответствует общим принципам, характерным для мотонейронов. Более подробная информация представлена в отдельной статье на сайте. Задние нервные корешки берут начало от униполярных нейронов, тела которых расположены в спинальных ганглиях, а чувствительные (афферентные) центральные отростки входят в задний рог серого вещества спинного мозга.

В состав спинномозгового нерва входят соматические эфферентные нервные волокна, направляющиеся к скелетной мускулатуре туловища и конечностей, и соматические афферентные нервные волокна, проводящие возбуждение от кожи, мышц и суставов. Кроме того, в спинномозговом нерве расположены висцеральные эфферентные и, в некоторых случаях, афферентные вегетативные нервные волокна.

Общие принципы внутреннего строения периферических нервов схематично изображены на рисунке ниже. Только лишь по строению нервных волокон невозможно определить, являются они двигательными или чувствительными.

Периферические нервы окружены эпиневрием - внешним слоем, состоящим из плотной неравномерной соединительной ткани и располагающимся вокруг пучков нервных волокон и сосудов, кровоснабжающих нерв. Нервные волокна периферических нервов могут переходить из одного пучка в другой.

Каждый пучок нервных волокон покрыт периневрием, представленным несколькими отчетливо различимыми эпителиальными слоями, связанными плотными щелевидными соединениями. Отдельные шванновские клетки окружены эндоневрием, образованным ретикулярными коллагеновыми волокнами.

Менее половины нервных волокон покрыто миелиновой оболочкой. Немиелинизированные нервные волокна расположены в глубоких складках шванновских клеток.

Понятие «нервное волокно», как правило, применяют при описании проведения нервного импульса; в этом контексте оно заменяет термин «аксон». Миелинизированные нервные волокна представляют собой аксоны, окруженные концентрически расположенными слоями (пластинками) миелина, образованными плазматическими мембранами шванновских клеток. Немиелинизированные нервные волокна окружены отдельными немиелинизируюгцими шванновскими клетками; плазматическая мембрана этих клеток - нейролемма - одновременно покрывает несколько немиелинизированных нервных волокон (аксонов). Структура, образованная таким аксоном и шванновской клеткой, получила название «ганглий Ремака».


Строение грудного спинномозгового нерва. Обратите внимание: на рисунке не указан симпатический компонент.
КП - концевая пластинка двигательного нерва на мышце; НОМВ - нервное окончание мышечного веретена; МН - мультиполярный .

а) Образование миелина . Шванновские клетки (леммоциты) - представители нейроглиальных клеток периферической нервной системы. Эти клетки образуют непрерывную цепочку вдоль периферических нервных волокон. Каждая шванновская клетка миелинизирует участок нервного волокна длиной от 0,3 до 1 мм. Видоизменяясь, шванновские клетки образуют в спинальных и вегетативных ганглиях сателлитные глиоциты, а в области нервно-мышечных соединений - клетки телоглии.

В процессе миелинизации аксона одновременно участвуют все окружающие его шванновские клетки. Каждая шванновская клетка оборачивается вокруг аксона, образуя «дупликатуру» плазматической мембраны,-мезаксон. Мезаксон поступательно смещается, накручиваясь на аксон. Последовательно формирующиеся слои плазматической мембраны располагаются друг напротив друга и, «вытесняя» цитоплазму, образуют главную (крупную) и межпромежуточную (мелкую) плотные линии миелиновой оболочки.

В области конечных участков миелинизированных сегментов аксона по обеим сторонам от перехватов Ранвье (промежутков между конечными участками соседних шванновских клеток) расположены паранодальные карманы.


Поперечный срез нервного ствола.
(А) Световая микроскопия. (Б) Электронная микроскопия.
Миелинизация в периферической нервной системе.
Стрелками указано направление накручивания цитоплазмы шванновской клетки.

1. Миелин ускоряет проведение импульсов . По аксонам немиелинизированных нервных волокон проведение импульса осуществляется непрерывно со скоростью около 2 м/с. Поскольку миелин выполняет функцию электроизолятора, возбудимая мембрана миелинизированных нервных волокон ограничена перехватами Ранвье. В связи с этим возбуждение распространяется от одного перехвата к другому сальтаторно - «скачкообразно», обеспечивая значительно большую скорость проведения нервного импульса, достигающую значений 120 м/с. Количество импульсов, проводимых за секунду, значительно выше у миелинизированных нервных волокон по сравнению с немиелинизированными.

Следует отметить, что чем крупнее миелинизированное нервное волокно, тем длиннее его межузловые сегменты, в связи с чем нервные импульсы, «делая большие шаги», распространяются с большей скоростью. Для описания зависимости между размером нервного волокна и скоростью проведения импульсов можно использовать «правило шести»: скорость распространения нервных импульсов по волокну, диаметр которого составляет 10 нм (включая толщину миелинового слоя), составляет 60 м/с, а по волокну диаметром 15 нм - 90 м/с и т. д.

С точки зрения физиологии периферические нервные волокна классифицируют по скорости проведения нервных импульсов, а также по другим критериям. Двигательные нервные волокна разделяют на типы А, В и С в соответствии с уменьшением скорости проведения импульсов. Чувствительные нервные волокна разделяют на группы I-IV по такому же принципу. Однако на практике эти классификации взаимозаменяемы: так, например, немиелинизированные чувствительные нервные волокна относят не к типу С, а к группе IV.

Подробная информация о диаметрах и местах локализации периферических нервных волокон представлена в таблицах ниже.


На электронно-микроскопическом изображении показаны миелинизированное периферическое нервное волокно и окружающая его шванновская клетка. На рисунках ниже представлена группа немиелинизированных нервных волокон, погруженных в цитоплазму шванновской клетки и продемонстрирован участок перехвата Ранвье аксона ЦНС.

б) Область перехода центральной нервной системы в периферическую нервную систему . В области моста мозга и спинного мозга периферические нервы входят в переходную зону между центральной и периферической нервной системой. Отростки астроцитов из ЦНС погружаются в эпиневрий корешков периферических нейронов и «переплетаются» со шванновскими клетками. Астроциты немиелинизированных волокон погружаются в пространство между аксонами и шванновскими клетками. Перехваты Ранвье миелинизированных нервных волокон в периферической части окружаются миелином шванновских клеток (демонстрируя некоторые переходные свойства), а в центральной части - миелином олигодендроцитов.

в) Резюме . Стволы спинномозговых нервов проходят в межпозвоночных отверстиях. Эти структуры образуются при соединении вентральных (двигательных) и дорсальных (чувствительных) нервных корешков и разделяются на смешанные вентральные и дорсальные ветви. Нервные сплетения конечностей представлены вентральными ветвями.

Периферические нервы покрыты эпиневральной соединительной тканью, пучковидной периневральной оболочкой и эндоневрием, образованным коллагеновыми волокнами и содержащим шванновские клетки. Миелинизированное нервное волокно включает аксон, миелиновую оболочку и цитоплазму шванновской клетки - нейролемму. Миелиновые оболочки формируются шванновскими клетками и обеспечивают сальтаторное проведение импульсов со скоростью, прямо пропорциональной диаметру нервного волокна.



а - Миелинизированное нервное волокно. Десять слоев миелина окружают аксон от внешнего к внутреннему мезаксону шванновской клетки (указано стрелками). Базальная мембрана окружает шванновскую клетку.
б - Немиелинизированные нервные волокна. Девять немиелинизированных волокон погружены в цитоплазму шванновской клетки. Мезаксоны (некоторые указаны стрелками) визуализируются при полном погружении аксонов.
Два неполностью погруженных аксона (сверху справа) покрыты базальной мембраной шванновской клетки.
Область перехвата Ранвье ЦНС. Доходя до области перехвата Ранвье, миелиновая оболочка сужается и заканчивается, закручиваясь в области паранодальных карманов цитоплазмы олигодендроцита.
Длина области перехвата Ранвье составляет около 10 нм; на этом участке отсутствует базальная мембрана.
Микротрубочки, нейрофиламенты и удлиненные цистерны гладкой эндоплазматической сети (ЭПС) формируют продольные пучки.

Область перехода центральной нервной системы (ЦНС) в периферическую нервную систему (ПНС).

В человеческом организме существует несколько систем, включая пищеварительную, сердечно-сосудистую и мышечную. Отдельного внимания заслуживает нервная – она заставляет человеческий организм двигаться, реагировать на раздражающие факторы, видеть и мыслить.

Нервная система человека – совокупность структур, которая выполняет функцию регуляции абсолютно всех частей организма , отвечает за движения и чувствительность.

Виды нервной системы человека

Перед тем как отвечать на интересующих людей вопрос: «как работает нервная система», необходимо разобраться, из чего она собственно состоит и на какие составляющие ее принято разделять в медицине.

С видами НС далеко не все так однозначно – ее классифицируют по нескольким параметрам:

  • область локализации;
  • вид управления;
  • способ передачи информации;
  • функциональная принадлежность.

Область локализации

Нервная система человека по области локализации бывает центральная и периферическая . Первая представлена головным и костным мозгом, а вторая состоит из нервов и вегетативной сети.

ЦНС выполняет функции регуляции всеми внутренними и внешними органами. Она заставляет их взаимодействовать между собой. Периферической называют ту, которая в связи с анатомическими особенностями находится за пределами спинного и головного мозга.

Как работает нервная система? ПНС реагирует на раздражающие факторы, отправляя сигналы в спинной, а после и головной мозг. После органы ЦНС обрабатывают их и вновь посылают сигналы в ПНС, которая приводит, к примеру, мышцы ноги в движение.

Способ передачи информации

По данному принципу выделяют рефлекторную и нейрогуморальную системы . Первая – это спинной мозг, который без участия головного способен реагировать на раздражители.

Интересно! Человек не контролирует рефлекторную функцию, так как спинной мозг сам принимает решения. К примеру, когда вы прикасаетесь в горячей поверхности, ваша рука сразу же отдергивается, и при этом вы даже не думали совершить это движение – сработали ваши рефлексы.

Нейрогуморальная, к которой относится головной мозг, должна изначально обработать информацию, данный процесс вы можете контролировать. После этого сигналы отправляются в ПНС, которая выполняет команды вашего мозгового центра.

Функциональная принадлежность

Говоря про части нервной системы, нельзя не упомянуть вегетативную, которая в свою очередь разделена на симпатическую, соматическую и парасимпатическую.

Вегетативная система (ВНС) – это отдел, который отвечает за регуляцию работы лимфатических узлов, кровеносных сосудов, органов и желез (внешней и внутренней секреции).

Соматическая система – это совокупность нервов, которые находятся в костях, мышцах и коже. Именно они реагируют на все факторы окружающей среды и отправляют данные в мозговой центр, а после выполняют его приказы. Абсолютно каждое движение мышц контролируется соматическими нервами.

Интересно! Правой частью нервов и мышц управляет левое полушарие, а левой – правое.

Симпатическая система отвечает за выброс адреналина в кровь, контролирует работу сердца , легких и поступление питательных веществ во все части организма. Кроме того, она регулирует насыщение тела .

Парасимпатическая отвечает за уменьшение частоты движений , также контролирует работу легких, некоторых желез, радужной оболочки. Не менее важная задача – регулирование пищеварения.

Вид управления

Еще одну подсказку на вопрос «как работает нервная система» может дать удобная классификация по видам управления. Ее разделяют на высшую и низшую деятельность.

Высшая деятельность контролирует поведение в окружающей среде. Вся интеллектуальная и творческая деятельность также относится к высшей.

Низшая деятельность – это регуляция всех функций внутри человеческого организма. Данный вид деятельности делает все системы организма единым целым.

Строение и функции НС

Мы уже разобрались, что всю НС следует разделять на периферическую, центральную, вегетативную и все вышеперечисленные, но еще многое нужно сказать об их строении и функциях.

Спинной мозг

Данный орган находится в позвоночном канале и по сути является этаким «канатом» из нервов. Его разделяют на серое и белое вещество, где первое полностью покрыто вторым.

Интересно! В разрезе заметно, что серое вещество сплетено из нервов таким образом, что напоминает бабочку. Именно поэтому его часто называют «крыльями бабочки».

В общей сложности спинной мозг состоит из 31 отдела , каждый из которых отвечает за отдельную группу нервов, контролирующих определенные мышцы.

Спинной мозг, как уже говорилось, может работать без участия головного – речь о идет рефлексах, которые не поддаются регуляции. В ту же очередь он находится под контролем органа мышления и выполняет проводниковую функцию.

Головной мозг

Данный орган является наименее исследованным, многие его функции до сих вызывают множество вопросов в ученых кругах. Он разделен на пять отделов:

  • большие полушария (передний мозг);
  • промежуточный;
  • продолговатый;
  • задний;
  • средний.

Первый отдел составляет 4/5 всей массы органа. Он отвечает за зрение, обоняние, движения, мышление, слух, чувствительность. Продолговатый мозг – невероятно важный центр, который регулирует такие процессы, как сердцебиение, дыхание, защитные рефлексы , выделение желудочного сока и другие.

Средний отдел контролирует такую функцию, как . Промежуточный играет роль в формировании эмоционального состояния. Также здесь находятся центры, отвечающие за терморегуляцию и обмен веществ в организме.

Строение головного мозга

Строение нерва

НС – это совокупность миллиардов специфических клеток. Чтобы разобраться, как работает нервная система, необходимо поговорить о ее строении.

Нерв – это структура, которая состоит из определенного количества волокон. Те же в свою очередь состоят из аксонов – именно они являются проводниками всех импульсов.

Количество волокон в одном нерве может существенно отличается. Обычно оно составляет около одной сотни, а вот в человеческом глазу находится более 1,5 млн. волокон.

Сами же аксоны покрыты специальной оболочкой, которая значительно увеличивает скорость сигнала – это позволяет человеку реагировать на раздражители чуть ли не моментально.

Сами нервы также бывают различными, а потому их классифицируют на следующие типы:

  • двигательные (передают информацию из ЦНС в мышечную систему);
  • черепные (сюда входят зрительные, обонятельные и другие виды нервов);
  • чувствительные (передают информацию от ПНС к ЦНС);
  • спинные (находятся в и управляют частями тела);
  • смешанные (способны передавать информацию в два направления).

Строение нервного ствола

Мы уже разобрались в таких темах, как «Виды нервной системы человека» и «Как работает нервная система», но в стороне осталось много интересных фактов, которые достойны упоминания:

  1. Количество в нашем организме больше, нежели число людей на всей планете Земля.
  2. В головном мозге находится порядком 90–100 млрд. нейронов. Если все их связать в одну линию, то она достигнет порядка 1 тыс. км.
  3. Скорость движения импульсов достигает практически 300 км/час.
  4. После наступления полового созревания масса органа мышления с каждым годом уменьшается приблизительно на один грамм .
  5. У мужчин головной мозг приблизительно на 1/12 больше, нежели женский.
  6. Самый большой орган мышления был зафиксирован у психически больного.
  7. Клетки ЦНС практически не подлежат восстановлению, а сильные стрессы и волнения способны серьезно уменьшить их количество.
  8. До сих пор наука не определила, на сколько процентов мы используем свой главный мыслительный орган. Известными являются мифы, что не более 1%, а гении – не больше 10%.
  9. Размер органа мышления нисколько не влияет на умственную деятельность . Ранее считалось, что мужчины умнее представительниц прекрасного пола, но данное утверждение было опровергнуто в конце ХХ века.
  10. Алкогольные напитки очень сильно подавляют функцию синапсов (место контактов между нейронами), что в разы замедляет мыслительные и двигательные процессы.

Мы узнали, что же такое нервная система человека – это сложная совокупностью миллиардов клеток, которые взаимодействуют между собой со скоростью, равной движению самых быстрых автомобилей в мире.

Среди многих видов клеток эти восстанавливаются сложнее всего, а некоторые их подвиды и вовсе не поддаются восстановлению. Именно потому они прекрасно защищены черепом и позвоночными костями.

Интересен также тот факт, что болезни НС являются наименее подающимися лечению. Современная медицина в основном только способна замедлить гибель клеток, а вот остановить данный процесс невозможно . Многие другие виды клеток с помощью специальных препаратов можно защитить от разрушения на долгие годы – к примеру, клетки печени. В это время клетки эпидермиса (кожи) способны регенерировать в считанные дни или недели до прежнего состояния.

Нервная система — спинной мозг (8 класс) — биология, подготовка к ЕГЭ и ОГЭ

Нервная система человека. Строение и функции

Вывод

Абсолютно любое движение, каждая мысль, взгляд, вздох и удар сердца – все это контролируется сетью нервов. Она отвечает за взаимодействие человека с окружающим миром и связывает все остальные органы в единое целое – организм.

Любой нерв состоит из нервных волокон - проводящего аппарата и оболочек - опорного соединительно-тканного каркаса.

Оболочки

Адвентиций. Адвентиций является самой плотной, фиброзной наружной оболочкой.

Эпинсврий. Эпиневрий это упругая, эластичная соединительно-тканная оболочка, находящаяся под адвентицием.

Периневрий. Периневрий это покрытие, состоящее из 3-10 слоев клеток эпителиоидного типа очень устойчивое к растяжению, но легко рвущееся при сшивании. Периневрий разделяет нерв на пучки, содержащие до 5000-10000 волокон.

Эндоневрий. Представляет нежную оболочку разделяющую единичные волокна и небольшие пучки. При этом является как бы гематоневральным барьером.

Периферические нервы могут рассматриваться как своеобразные аксоналъные кабели, отграниченные более или менее сложными оболочками. Эти кабели являются отростками живых клеток, а сами аксоны непрерывно обновляются при помощи потока молекул. Нервные волокна, составляющие нерв, являются отростками различных нейронов. Двигательные волокна, это отростки мотонейронов передних рогов спинного мозга и ядер ствола мозга, чувствительные - дендриты ложноунштолярных нейронов спинномозговых ганглиев, вегетативные - аксоны нейронов пограничного симпатического ствола.

Отдельное нервное волокно состоит из собственно отростка нейрона - г осевого цилиндра и миелиновой оболочки. Миелиновая оболочка образована выростами мембраны шванновских клеток и имеет фосфолипидный состав, В этом периферические нервные волокна отличаются от волокон ЦНС. где миелиновая оболочка образована выростами олигодендроцитов.

Кровоснабжение нерва осуществляется посешентарно из соседних тканей или сосудов. На поверхности нерва сформирована продольная сеть сосудов, от которой отходят множество перфорирующих ветвей к внутренним структурам нерва. С кровью к нервным волокнам поступают глюкоза, кислород, низкомолскулярные энергетические субстраты, а удаляются продукты распада.

Для выполнения функции проведения нервном)" волокну необходимо постоянно поддерживать свою структуру. Однако, собственных структур осуществляющих биосинтез для удовлетворения пластических потребностей в отростках нейрона не достаточно. Поэтому основной синтез происходит в теле нейрона с последующим транспортом образованных веществ по аксону. В значительно меньшей степени этот процесс осуществляется шванновскими клетками с дальнейшим переходом метаболитов в осевой цилиндр нервного волокна.

Аксональныи транспорт.

Выделяют быстрый и медленный тил перемещения веществ по волокну.

Быстрый ортоградный аксональный транспорт происходит со скоростью 200-400 мм в сутки и в основном ответственен за перенос составных частей мембран: фосфолигащов, липопротеинов и мембранных ферментов. Ретроградный аксональный транспорт обеспечивает перемещение частей мембран в обратном направлении со скоростью до 150-300 мм в сутки и накопление их вокруг ядра в тесной связи с лизосомами. Медленный ортоградный аксональный транспорт происходит со скоростью 1-4 мм в сутки и переносит растворимые белки и элементы внутреннего клеточного каркаса. Объем веществ, переносимый медленным транспортом значительно больше, чем быстрым.

Любой вид аксонального транспорта это энергетически зависимый процесс, выполняемый сократительными белками аналогами актина и миелина в присутствии макроэргов и ионов кальция. Энергетические субстраты и ионы поступают в нервное волокно вместе с локальным кровотоком.

Локальное кровоснабжение нерва - абсолютно необходимое условие для осуществления аксонального транспорта.

Нейрофизиология передачи импульса:

Проведение нервного импульса по волокну происходит за счет распространения по оболочке отростка волны деполяризации. Большинство периферических нервов по своим двигательным и чувствительным волокнам обеспечивают проведение импульса со скоростью до 50-60 м/сек. Собственно деполяризация процесс достаточно пассивный, тогда как восстановление мембранного потенциала покоя и способности к проведению осуществляется путем функционирования NA/K и Са насосов. Для их работы необходима АТФ, обязательным условием образования которой является наличие сегментарного кровотока. Прекращение кровоснабжения нерва сразу блокирует проведение нервного импульса.

Семиотика невропатий

Клинические симптомы развивающиеся при поражении периферических нервов определяются функциями нервных волокон, образующих нерв. Соответственно трем группам волокон имеются и три группы симптомов страдания: двигательные, чувствительные и вегетативные.

Клинические проявления этих нарушений могут проявляться симптомами выпадения функции, что встречается более часто и симптомами раздражения, последнее является более редким вариантом.

Двигательные нарушения по типу выпадения проявляются плегиями и парезами периферического характера с низким тонусом, низкими рефлексами и гипотрофиями. К симптомам раздражения следует отнести судорожное сведение мышц - крампи. Это приступообразные, болезненные стягивания одной или нескольких мышц (то что мы привыкли называть судорогой). Наиболее часто крампи локализуются в челюстно-подъязычной мышце, под затылочной мышце, аддукторах бедра, четырехглавой мышце бедра, трехглавой мышце голени. Механизм возникновения крампи недостаточно ясен, предполагается частичная морфологическая или функциональная денервация в сочетании с вегетативной ирритацией. При этом вегетативные волокна берут на себя часть функций соматических и тогда, поперечно-полосатая мышца начинает реагировать на ацетилхолин аналогично гладкой мускулатуре.

Чувствительные нарушения по типу выпадения проявляются гипестезией, анестезией. Симптомы ирритации более разнообразны: гиперестезия, гиперпатия (качественное извращение ощущения с приобретением неприятного оттенка), парестезии («мурашки», жжение в зоне иннервации), боль по ходу нервов и корешков.

Вегетативные нарушения проявляются нарушением потоотделения, страданием двигательной функции полых внутренних органов, ортостатической гипотонией, трофическими изменениями кожи и ногтей. Ирритативный вариант сопровождается болями с крайне неприятным режущим, выкручивающим компонентом, который возникает преимущественно при поражении срединного и большеберцового нервов, как наиболее богатых вегетативными волокнами.

Необходимо обратить внимание на вариабельность проявлений невропатии. Медленные изменения клинической картины происходящие в течение недель, месяцев действительно отражают динамику невропатии, тогда как изменения в течение часов или одного - двух дней чаще связаны с изменениями кровотока, температуры, электролитного баланса.

Патофизиология невропатии

Что же происходит с нервными волокнами при болезнях нерва?
Возможны четыре основных варианта изменений.

1.Валлеровскаядегенерация.

2. Атрофия и дегенерация аксона (аксонопатия).

3.Сегаентарная демиелинизация (миелинопатия).

4.Первичное поражение тел нервных клеток (невронопатия).

Валлеровская дегенерация происходит в результате грубого локального повреждения нервного волокна, чаще вследствие механических и ишемических факторов, Функция проведения по этому участку волокна нарушается полностью и сразу. Через 12-24 часа в дистальном участке волокна изменяется структура аксоплазмы, но проведение импульса сохраняется еще в течение 5-6 дней. На 3-5 день происходит деструкция окончаний нерва, а к 9 суткам - исчезновение их. С 3 по 8 день прогрессивно разрушаются мислиновыс оболочки. На второй неделе начинается деление шванновских клеток, и к 10-12 дню они образуют продольно ориентированные нервные отростки. С 4 по 14 день на проксимальных участках волокон появляются множественные колбы роста. Скорость прорастания волокна сквозь с/т в месте травмы может быть крайне малой, но дистальнее в неповрежденных отделах нерва темп регенерации способен достигать 3-4 мм в сутки. При таком типе поражения возможно хорошее восстановление.

Аксональная дегенерация происходит в результате метаболических нарушений в телах нейронов, что затем вызывает заболевание отростков. Причиной такого состояния являются системные метаболические заболевания и действие экзогенных токсинов. Аксональный некроз сопровождается поглощением миелина и остатков осевого цилиндра шванновскими клетками и макрофагами. Возможность восстановления функции нерва при этом страдании крайне низкая.

Сегментарная демиелинизация проявляется первичным поражением миелиновых оболочек при сохранности осевого цилиндра волокна. Острота развития нарушений может напоминать таковое при механической травме нерва, но нарушение функции легко обратимо, иногда в течение нескольких недель. Патоморфологически определяются непропорционально тонкие миелиновые оболочки, скопление в эндоневральном пространстве мононуклеарных фагоцитов, пролиферация отростков шванновских клеток вокруг отростков нейронов. Восстановление функции происходит быстро и в полном объеме при прекращении действия повреждающего фактора.