» »

Акустическая томография трубопроводов. Метод акустической томографии (АТ)

14.03.2020

Диагностика трубопроводов с применением метода акустической эмиссии

//Журнал "ТехСовет" №12(75) декабрь 2009г.

В связи с интенсивным старением магистральных трубопроводных систем вопрос совершенствования интегральных методов их технического диагностирования имеет приоритетное значение. В число ключевых задач применения таких методов входит оценка коррозионного и напряженно-деформированного состояния трубопроводов. Получение такой информации ‑ неотъемлемая часть вопроса определения остаточного ресурса до наступления предельного состояния, когда дальнейшая эксплуатация объекта становится невозможна. Известно, что к числу основных причин наступления предельных состояний на магистральных трубопроводах (МТ) можно отнести накопление микроструктурных дефектов в локальных зонах концентрации пластических деформаций. К таким зонам относятся, в частности, следующие: локальные участки трубопровода, подверженные неоднородным статическим или переменным нагрузкам; коррозионные области под напряжением; зона поперечного сварного соединения и околошовная зона, находящиеся также под действием переменной или статической нагрузки. В процессе длительной эксплуатации МТ более вероятны местные или локализованные повреждения, а не общее ухудшение свойств материала по всей длине трубопровода.

Как показала практика, большая часть отказов МТ при этом приходятся на области интенсивных пластических деформаций, развивающиеся в зонах перенапряжений из-за технологических дефектов, дефектов монтажа (сварка под напряжением), интенсивных очагов коррозионных повреждений, подвижек грунта, установки ремонтных конструкций и т.д. Совокупность динамических и статических нагрузок в процессе эксплуатации МТ вызывает при этом локальное образование двух основных типов повреждений, приводящих в конечном итоге к разрушению объекта, ‑ это трещиноподобные дефекты и дефекты коррозионной природы. К существенному увеличению скорости развития указанных повреждений могут приводить такие эксплуатационные факторы, как проведение периодических испытаний давлением, предусмотренных действующей нормативно-технической документацией (НТД), и нарушение технологического режима и правил ремонта со стороны эксплуатирующей организации (рис.1а и б). Такие дефекты в рамках существующих методик неразрушающего контроля МТ м могут быть не обнаружены или пропущены.

Практический опыт свидетельствует, что при диагностировании МТ в целях предотвращения разрушений целесообразно использовать мониторинговый принцип (рабочие параметры эксплуатации), т.е. осуществлять контроль без принудительного изменения давления. Вместе с тем для достоверной оценки технического состояния трубопровода необходимо использовать комплексный диагностический подход с применением нескольких независимых методов контроля, в т. ч. интегральных.

Применение, в частности, интегрального метода акустической эмиссии - неотъемлемая составная часть концепции внедрения комплексной системы технической диагностики магистральных рубопроводов. В рамках этой концепции в задачи метода акустической эмиссии (АЭ) на магистральных нефтепродуктопроводах прежде всего входит выявление разрушений задолго до их наступления и определение степени их опасности. Проблема применения данного метода заключается в том, что в существующих правилах и действующих отраслевых НТД для трубопроводов предусмотрено проведение АЭ-контроля в условиях принудительного изменения давления. На магистральных трубопроводах это сопряжено с большими временными и материальными затратами, так что изменять режим в условиях эксплуатации для конкретного диагностируемого участка зачастую представляется сложной и дорогостоящей задачей. И если опыт обоснования и проведения АЭ-диагностики в режиме мониторинга для магистральных газопроводов уже имеется, то для трубопроводов жидких углеводородов эта задача остается актуальной. Так, в рамках действующих НТД для АЭ-контроля магистрального нефтепровода необходимо обеспечить превышение текущего уровня рабочего давления как минимум на 10%. Учитывая высокую степень изношенности магистральных нефтепроводов, такие операции могут быть чреваты серьезными последствиями. Так, в результате испытаний давлением участков МТ с большими сроками эксплуатации скорость накопления и развития повреждений в них резко увеличивается, что может привести к существенному сокращению ресурса объекта или выходу его из строя (см. примеры на рис. 1). Но есть основания полагать, что при определенных рабочих параметрах транспорта продукта в МТ в реализации такой схемы нагружения нет необходимости.

В основе возникновения пульсаций внутреннего давления на рабочих параметрах МТ лежит два явления. Во-первых, это турбулентность, вызывающая высокочастотные пульсации давления, второй механизм относится к действию неустановившихся режимов в потоке жидкости.Такие режимы течения продукта наблюдаются при пусках и остановках трубопровода, включении или отключении агрегатов на НПС, полном или частичном закрытии задвижки, переключении резервуаров, сбросе или подкачке продукта, других технологических операциях, производимых при транспорте продукта. В результате перечисленных операций любое изменение скорости потока сопровождается возникновением волн повышения давления (рис. 2). Кроме того, принудительное изменение скорости течения в трубе вызывает пропорциональное изменение давления в потоке жидкости. Так, для стального трубопровода скорость распространения волн давления может достигать 1000 м/с, а изменение скорости течения u1085 на 1 м/с вызывает изменение движения в трубе на 0,9 МПа. При этом волны давления могут распространяться на значительные расстояния, постепенно затухая за счет диссипации механической энергии.

В целом можно сделать вывод, что в условиях текущей эксплуатации (режим мониторинга) в магистральном нефтепродуктопроводе возникают пульсации потока продукта, необходимые для создания условий проведения акустико-эмиссионного контроля.

Еще один, важный по значимости, тип дефектов относился к аномальным сварным соединениям (рис. 3а). В ходе дополнительного дефектоскопического контроля (ДДК) выявленных сварных швов были обнаружены многочисленные отклонения по результатам визуально-измерительного и ультразвукового контроля. На основании этих данных три из четырех сварных соединений были забракованы и подвергнуты дальнейшему ремонту. Остальные источники АЭ относились к локальным коррозионным повреждениям различного характера, в т.ч. и с высокой степенью поражения. Речь, прежде всего, идет о локальной питтинговой и язвенной коррозии (рис. 3б) и общей коррозии на участках повреждения изоляции со значительной потерей металла (рис. 3г).

Необходимо также отдельно отметить тот факт, что два опасных источника АЭ из всего проконтролированного объема методами ДДК подтверждены не были. Как показывает практика, отсутствие результатов по ДДК не исключает существование опасных дефектов, поскольку чувствительность АЭ-метода в несколько раз превышает предельную чувствительность использованных локальных методов неразрушающего контроля (НК). В этом случае обязательно проведение повторного акустико-эмиссионного контроля в месте расположения источника АЭ с целью уточнения его класса опасности и местоположения. При подтверждении высокого класса опасности источника АЭ, независимо от результатов ДДК, должно быть принято решение о ремонте или вырезке дефектного участка.

Отметим, что все вышеперечисленное показывает высокую эффективность усовершенствованной методики АЭ-контроля применительно u1082 к магистральным нефтепроводам. Основные выводы заключаются в следующем: *существует возможность проведения технического диагностирования магистральных нефтепродуктопроводов с применением метода акустической эмиссии в режиме мониторинга без принудительного изменения давления; *предлагаемая методика контроля позволит в некоторых случаях существенно упростить для заказчика процедуру проведения технического диагностирования действующего трубопровода без потери эффективности контроля.

Техническое решение

Для проверки и дальнейшей адаптации методики АЭ-контроля на участке действующего магистрального нефтепровода специалистами нашей фирмы был проведен ряд экспериментов. Объектом исследования был типовой участок магистрального нефтепровода ∅ 820 мм, марка стали 17Г2СФ, толщина стенки 10 мм, максимально разрешенное давление 4,7 мПа. Срок эксплуатации нефтепровода на момент проведения исследования составил более 30 лет, рабочее давление на участке на момент проведения контроля составило 4,5 мПа.

Эксперимент проводился с применением акустико-эмиссионной системы A-Line 32D (рис. 4). Среднее расстояние между АЭ-преобразователями составило 40 м. В ходе первичного АЭ-контроля, осуществленного в рамках действующих правил ПБ 03-593-03 с принудительным изменением давления, были выявлены дефектные участки трубопровода с местами локализации источников АЭ, соответствующих развивающимся дефектам. Последующая запись колебаний давления в трубопроводе с регистрацией параметров АЭ осуществлялась после двухчасовой выдержки на рабочих параметрах в режиме мониторинга (рис. 5). Видно, что волна на графике имеет две характерные составляющие, а именно на фоне низкочастотного тренда увеличения давления от 4,5 до 5 МПа возникают высокочастотные пульсации с периодом до 30 сек. и размахом значений давления до 0,2 мПа. Есть основания полагать, что подобный характер пульсаций может быть связан с рассмотренными выше механизмами изменения давления. Вследствие этого создаются необходимые условия для проведения акустико-эмиссионных измерений.

В завершение работы с целью отладки предложенной методики АЭ-контроля линейной части магистральных нефтепроводов и подтверждения сделанных выводов предварительно продиагностированные участки магистрального нефтепровода с реализацией стандартной схемы нагружения (рис. 6) были подвергнуты дополнительному АЭ-контролю в режиме мониторинга. В результате обнаруженные ранее источники АЭ, соответствующие опасным развивающимся дефектам, были зарегистрированы и локализованы повторно. Общая длина проконтролированного трубопровода составила 12 км. В результате на 21 участке МТ было выявлено 18 источников АЭ 2-го класса опасности и 43 источника АЭ 1-го класса опасности. Источники 2-го класса были подвергнуты дополнительному дефектоскопическому контролю (ДДК). Результаты контроля сведены в табл. 1. Из таблицы видно, что большая часть дефектов приходится на ремонтные конструкции, установленные ранее. По-видимому, причины этих источников могут заключаться в двух особенностях: дефекты непосредственно самой конструкции и дефекты трубопровода под ремонтной конструкцией, которые продолжают развиваться. Отметим, что и в том и в другом случае обнаруженные источники АЭ представляют серьезную опасность для эксплуатации трубопровода и впоследствии должны быть устранены. Однако если собственные дефекты конструкции могут быть выявлены с помощью локальных методов НК (визуально-измерительный, ультразвуковой, рентгеновский и магнитный контроль), то дефекты трубопровода под ремонтной конструкцией локальными методами не выявляются. На основании полученных данных можно сделать вывод, что метод акустической эмиссии в режиме мониторинга может быть эффективно использован при диагностике ранее выявленных дефектов МТ с целью определения их текущего состояния и дальнейшего принятия решения об очередности и виде их ремонта.

Табл. 1. Результаты АЭ-контроля магистрального нефтепровода в режиме мониторинга.

Литература

  1. Гриб В. В. "Диагностика технического состояния и прогнозирование остаточного ресурса магистральных нефтегазопродуктопроводов." - М.: ЦНИИТЭнефтехим, 2004. - 50 с.
  2. Семенов С. Е., Рыбаков А. А., Кирьян В. И. и др. "Экспериментальная оценка состояния металла длительно работающих нефтепроводов." - Автоматическая сварка. 2001. № 5. С. 14-18.
  3. , Стюхин Н. Ф. "Контроль трубопроводов с применением метода акустической эмиссии." - В мире НК. 2009. № 1(43). С. 29-31.
  4. Баранов В. М., Гриценко А. И., Карасевич А. М. и др. "Акустическая диагностика и контроль на предприятиях топливно-энергетического комплекса." - М.: Наука, 1998. , , Стюхин Н. Ф. "Течеискание на технологических трубопроводах с применением метода акустической эмиссии." - В мире НК. 2009. № 2(44).

Синхронный регистратор акустических сигналов - новая улучшенная версия акустического томографа, обеспечивающая синхронную запись акустических сигналов по двум каналам. Полностью отечественная разработка.

Назначение устройства:

Прибор Каскад-3 является синхронным акустическим регистратором и относится к классу записывающих устройств. Используя различное программное обеспечение, прибор может использоваться для:

  • Поиска мест утечек горячей и холодной воды на теплопроводах и водопроводах.
  • Поиска мест перенапряжения и локализации дефектов на участке трубопровода, определение его остаточного рабочего ресурса.

В отличие от обычных корреляционных течеискателей синхронный регистратор акустических сигналов «Акустический томограф «Каскад-3» обладает не одной, а двумя функциями:

  • ПО "Акустическая томография - Каскад" для диагностики трубопроводов горячего и холодного водоснабжения;
  • при совместном использовании с ПО "Течь" как высокочувствительный корреляционный течеискатель .

При разработке прибора учтены недостатки и пожелания пользователей предыдущих моделей, а именно:

  • уменьшены габариты всех блоков;
  • разработаны новые датчики повышенной чувствительности и улучшенно соотношение сигнал-шум;
  • повышена надежность эксплуатации комплекта.

Акустический течеискатель Каскад-3 состоит из трех блоков:

  • двух выносных автономных регистраторов, к которым подключаются высокочувствительные датчики
  • блока задания режимов регистрации.

Томограф позволяет осуществить одновременную синхронную регистрацию акустических сигналов, распространяющихся по воде, записать «шум тока воды». Далее информация переводится компьютер и обрабатывается с помощью специальных программ.

До перевода в компьютер прибор позволяет осуществить более 80-ти записей.

Необходимая одновременность регистрации сигналов на автономных и разнесенных блоках регистрации обеспечивается высоким уровнем синхронизации в момент начала работ и высокоточными таймерами. Такая схема работы обеспечивает большую надежность работы в городских условиях чем кабельные линии связи и радиоканалы.

В функции корреляционного течеискателя прибор позволяет обнаруживать течи:

  • диаметр трубопровода - более 50 мм;
  • длина единичного участка - от 50 до 500 м;
  • точность определения местоположения течи - 1% от длины участка;
  • минимальная интенсивность утечки воды - 0,5 м 3 /час.

Функция прибора для диагностики технического состояния трубопровода:

  • диаметр трубопровода - более 80 мм;
  • длина единичного участка - от 40 до 300 м;
  • точность определения местоположения дефекта - 1,5% от длины участка;
  • достоверность идентификации дефекта по параметру опасности образования течи - 80%

Акустический томограф "Каскад-3" полностью соответствует требованиям технических регламентов Таможенного союза 004/2011 "О безопасности низковольтного оборудования" и 020/2011 "Электромагнитная совместимость технических устройств".

Технические характеристики акустического томографа Каскад-3:

Поиск течи на трубопроводе минимальная интенсивность утечки 0,5 м 3 /час
размер диаметра трубопровода более 50 мм
длина единичного участка от 50 до 500 м
точность определения местоположения течи 0,7 %
Диагностика технического
состояния
размер диаметра трубопровода более 80 мм
длина единичного участка от 40 до 300 м
точность определения местоположения дефекта 0,7 %
достоверность идентификации дефекта по
вероятности образования течи
83 %
Эксплуатационные габариты в транспортной упаковке Д/Ш/В 30/25/15 см
вес с транспортной упаковкой 2,5 кг
количество банков памяти прибора 80 шт.
количество записей в одном сеансе измерений 1-4 шт.
время записи сигнала с 1 участка 3 мин.
время работы без подзарядки не менее 10 часов
время зарядки аккумулятора 8 часов
чувствительность датчиков 7000 милвольт/g
АКУСТИЧЕСКАЯ ТОМОГРАФИЯ ТРУБОПРОВОДОВ ВОДОСНАБЖЕНИЯ

Вибродиагностический метод акустической томографии с использованием самого совершенного оборудования и программного обеспечения позволяет с высокой степенью достоверности осуществлять диагностику трубопроводов как холодного, так и горячего водоснабжения. Метод уже достаточно давно и широко используется в коммунальном хозяйстве в России и за рубежом. Его популярность объясняется высокой отдачей на затраченные усилия по проведению диагностики по сравнению с другими методами.

Вибродиагностический метод акустической томографии является развитием технологии корреляционного течеискания, поэтому оборудование для акустической томографии обладает также функциями корреляционного течеискателя и используется для поиска уже существующих течей.

В настоящее время проведены ряд успешных испытаний метода для диагностирования промысловых нефтепроводов.

АКУСТИЧЕСКАЯ ТОМОГРАФИЯ ДЛЯ НЕФТЕПРОВОДОВ

При соответствующих корректировках метод Акустической томографии применим для контроля трубопроводов любых жидких сред. К таким относятся и трубопроводы нефти.

Совместно с партнерами производителем акустического томографа Каскад-3 проведен ряд успешных испытаний метода Акустической томографии для технического контроля промысловых трубопроводов нефти. Результаты некоторых из них опубликованы в статье "Акустический метод диагностики нефтепромысловых трубопроводов" в журнале "Инженерная практика" №10 за 2015 год. Мы видим большой потенциал для метода в области контроля промысловых нефтепроводов.

Комплект поставки:

Блок памяти (регистратор)- 2шт.

Блок связи- 1 шт.

Аккустический датчик (акселерометр)- 2шт.

З/у 220 вольт/ 12 вольт 3 ампера- 1шт.

Кабель связи USB- 1 шт.

Сетевой кабель к ЗУ 220 вольт- 1 шт.

Чемодан для укладки 1 шт.

Инструкция по эксплуатации- 1 шт.

Компакт-диск с программным обеспечением- 1 шт.

Паспорт- 1 шт.

Наша компания рада предложить услуги по диагностике трубопроводов.

Современное оборудование позволяет в короткие сроки устранить неполадки, оценить общее состояние системы и вычислить процент износа.

Работы проводятся инженерами – специалистами со стажем и положительным опытом.

По завершении инженерных мероприятий, мастера составят отчет по неисправностям, объему предстоящих работ и дадут советы по предотвращению аварийных ситуаций.

Почему требуется диагностика трубопроводов?

Чтобы снизить материальные риски, связанные с восстановлением оборудования и устранением неполадок, существуют оптимальные методы, не требующие демонтажа.

Особо важно помнить, что при планировании ремонта и его проведении, а также для прогнозирования аварийных вспышек, выполнение данной процедуры обязательно!

Обнаружение наличия постороннего мусора, нахождение стыков, в которых пострадала герметичность, разнообразных механических повреждений – вот неполный перечень задач, решаемых нашей компанией.

Какие методы диагностики трубопроводов (Москва) мы используем:

Акустическая эмиссия. Специальный микрофон улавливает, фиксирует и анализирует звуки, приходящие со стенок.

Опрессовка – классический вариант, используемый коммунальными службами перед началом отопительного сезона. Высокое давление воздуха (воды) маркируют места, нуждающиеся в ремонте или монтаже.

Видеоисследование . Оптико-электронная техника помещается внутрь трубы. Продвигаясь по ней, она фиксирует все неисправности: деформации, протечки и т.д. Изображение передается на экран, а специалист принимает решения. Стоимость видеодиагностики состояния труб вполне доступная и пользуется особым уважением в силу особой точности полученных данных и экономии времени.

Метод ультразвуковой диагностики трубопроводов опирается на способность ультразвука отражаться от препятствий. Эта особенность позволяет находить повреждения, не нарушая целостности строения.

Какой способ следует применять в том или ином случае решает специалист. Чтобы уладить вопрос об оптимальности, свяжитесь с представителями нашей организации по телефону, указанному на сайте. Так Вы получите всю необходимую информацию, а также сможете пригласить бригаду рабочих, которая даст оценку состояния труб (Москва).

Какие трубопроводы мы обслуживаем

Магистральные – предназначены для транспортировки чего-либо на достаточно дальние расстояния. Им свойственно давать сбои в режиме насосов.

Технологические – на предприятиях, где осуществляется перекачка пара, горячей воды, газ и другое. А также с их помощью перемещается производственные отходы.

Коммунально-сетевые – передаются горячая вода, пар, отходы бытовых нужд (наиболее сложные в обслуживании).

Судовые – перекачивают жидкости на водном транспорте.

Машинные – передают топливо и другое машинное сырье, характерное для транспортного средства.

Стоимость услуг по диагностике трубопроводов

Отметим, что стоимость диагностики состояния трубопровода по ценам, размещенным на сайте, является ориентировочной и может отличаться от итоговой.

Какие факторы учитываются при подсчете суммы:

Использование того или иного метода (его сложность/простота), типа трубопровода, наличия/отсутствия работ по устранению неполадок и т.п.

Обратившись к нашим консультантам, Вы сможете уточнить детали, а они, в свою очередь, учтут особенности заказа и рассчитают его сумму.

Цены на диагностику трубопроводов:

Наименование работ Ед.изм Стоимость ед. работ (руб)
Базовый пакет (диагностика участка трубопровода до 200 метров, в пределах МКАД + 5 км, в интервале с 8-00 до 18-00)
Выезд диагностической лаборатории 2 000 руб.
Работы по диагностике утечки, в том числе:
  • Трассировка трубопровода, уточнение места его прохождения;
  • Поиск акустическим методом;
  • Поиск корреляционным методом;
  • Инфракрасная диагностика тепловизором;
  • Обнаружение кабелей и других пересекающих коммуникаций;
Простой диагностический отчет в виде отметки на карте Заказчика, с привязкой к наружным ориентирам + фото. 9 900 руб.
Дополнительные услуги (заказ обсуждается ДО подписания договора)
Выезд за МКАД далее 5 км 5 000 руб.
Обследование трассы длинной более 200 м, за каждые +100 м 5 000 руб.
Работа в неурочное или ночное время (с 18-00 до 8-00) 5 000 руб.
Полный диагностический отчет PDF-файл с комментариями инженера по каждому обследованному участку, с приложением кореллограмм, термограмм, фотографий. 15 000 руб.

Будьте уверены, стоимость диагностики трубопроводов в Москве в других компаниях значительно выше. Мы предлагаем качественную работу по доступным ценам!

Наши преимущества

Какие факторы ставят нас в один ряд с ведущими фирмами по предоставлению подобных услуг?

  1. В первую очередь, наличие современного оборудования, высокоточной компьтеризированной техники, а также профессиональных специалистов.
  2. Во-вторых, тщательный, качественных подход к решению проблем и наличие гарантий на произведенные услуги.

Немаловажную роль играет и тот факт, что мы стараемся устранить неполадки в кротчайшие сроки, заботясь об экономии времени заказчика. Выбирайте нас и Вы не прогадаете!

Метод АТ основывается на известном физическом явлении- возбуждении потоком воды зон (интервалов) повышенных напряжений трубопровода на их собственных резонансных частотах. К таким зонам относятся также и интервалы, на которых имеется утонение стенки трубы за счет коррозии (внутренней и внешней). Исследования на стенде и на действующих трубопроводах показали, что дефекты размером в поперечнике несколько десятков сантиметров и более излучают сигналы в диапазоне частот от 300 до 5000 Гц - акустический диапазон. Эти сигналы передаются через жидкость к концам участка трубы, где и фиксируются акселерометрами (виброакустическими датчиками).
Основное достоинство метода- высокая достоверность результатов и экономичность, обусловленная следующими технологическими особенностями:

  • для проведения диагностирования не требуется менять режим экспдуатации трубопровода;
  • на проведение диагностирования не влияют наличие у трубопровода углов поворота и компенсаторов;
  • для проведения диагностирования достаточно получить доступ к трубопроводу в камерах или смотровых колодцах, т.е. в основной массе случаев можно обойтись без шурфов;
  • для установки датчиков требуется снимать минимум изоляции. Получить доступ к металлу трубы достаточно в пятне, по площади соответствующем размерам основания датчика. Как правило такие места без изоляции имеются в любой камере или смотровом колодце;
  • обработка данных производится автоматически.

Синхронный регистратор акустических сигналов «Акустический томограф «Каскад-3»-улучшенная версия акустического томографа, обеспечивающая синхронную запись акустических сигналов по двум каналам. Полностью отечественная разработка.
В отличие от обычных корреляционных течеискателей синхронный регистратор акустических сигналов «Акустический томограф «Каскад-3» обладает не одной, а двумя функциями:

  • при совместном использовании с ПО "Акустическая томография- Каскад" для диагностики трубопроводов горячего и холодного водоснабжения;
  • при совместном использовании с ПО "Течь" как высокочувствительный корреляционный течеискатель.

Прибор имеет:

  • уменьшены габариты всех блоков;
  • разработаны новые датчики повышенной чувствительности и улучшенное соотношение сигнал-шум.

Акустический течеискатель состоит из трех блоков:

  • двух выносных автономных регистраторов, к которым подключаются высокочувствительные датчики
  • блока задания режимов регистрации.

Томограф позволяет осуществить одновременную синхронную регистрацию акустических сигналов, распространяющихся по воде, записать «шум тока воды». Далее информация переводится компьютер и обрабатывается с помощью специальных программ.

До перевода в компьютер прибор позволяет осуществить более 80-ти записей.

Необходимая одновременность регистрации сигналов на автономных и разнесенных блоках регистрации обеспечивается высоким уровнем синхронизации в момент начала работ и высокоточными таймерами. Такая схема работы обеспечивает большую надежность работы в городских условиях чем кабельные линии связи и радиоканалы.

В функции корреляционного течеискателя прибор позволяет обнаруживать течи:

  • длина единичного участка - от 50 до 300 м;
  • точность определения местоположения течи - 1% от длины участка;
  • минимальная интенсивность утечки воды - 0,5 м3/час.

Функция прибора для диагностики технического состояния трубопровода:

  • диаметр трубопровода - более 80 мм;
  • длина единичного участка - от 40 до 300 м;
  • точность определения местоположения дефекта - 1,5% от длины участка;
  • достоверность идентификации дефекта по параметру опасности образования течи - 80%.

Метод Акустической томографии является развитием технологии корреляционного течеискания. В связи с этим оборудование для Акустической томографии также обладает функциями корреляционных течеискателей.

Для обнаружения местоположения течи с помощью корреляционных течеискателей, на концах обследуемого участка, в точках доступа (тепловые и смотровые камеры, подвалы домов, шурф и т.п), на поверхность трубы устанавливаются два виброакустических датчика, которые фиксируют звуковые сигналы, распространяющиеся по воде внутри трубы. Сигналы от датчиков передаются на блок оператора, где осуществляется автоматическая их обработка.
В ходе обработки, поступающие акустические сигналы фильтруются для выделения значимых сигналов от течи на фоне различных шумов. Далее осуществляется корреляционный анализ, позволяющий определить местоположение источника сигнала.
О местоположении течи судят по расположению максимума корреляционной функции.
Рассмотрим принцип работы корреляционных течеискателей и показатели по обнаружению и определению местоположения течи несколько подробнее.

Наиболее частыми авариями, которые происходят на трубопроводах различного предназначения, является образование течей. Они возникают при повреждении стенок трубопроводов и сопровождаются заполнением смотровых камер, подвалов и других объёмов теми носителями, которые протекают в них. Для выявления таких течей часто используют аэросъёмку инфракрасного типа. Однако, для устранения не обойтись без обнаружения точного расположения дефекта (течи).


Парение Течь Течь + затопление

Одним из основных методов обнаружения течей, которые используют специализированные организации, являются последовательные ширфовки. Этот метод отличается своей высокой стоимостью и большими трудозатратами. Но при этом он также малоэффективен. Предпочтительней в таких случаях использовать специальное оборудование, например, течеискатели. Они обеспечивают более точное определение течей с минимальной затратой времени.

Среди подобного оборудования наибольшую популярность завоевали течеискатели акустического типа. К ним относятся течеискатели корреляционного типа, а также шумофоны.

Принцип работы шумофонов основан на применении двух датчиков, которые размещают непосредственно на земле над трубопроводом. Датчики осуществляют фиксацию звуковых сигналов шума воды, в том числе и в местах течи. Данные сигналы они передают на головное устройство, с которым и работает оператор. Таким образом, анализируя шумовые эффекты, он может определить место аварии на трубопроводе.


Течеискатель «Аист 5» Течеискатель HL 5000

Для более точного определения места течи может использоваться второй датчик, с помощью которого можно сравнить уровень шума в различных частях водопровода.

Шумофон является достаточно недорогим прибором, который может позволить приобрести любая организация. Однако, его недостатком является зависимость от слуховых способностей оператора. То есть, в данном случае основным анализирующим центром выступает сам человек, и насколько у него развит музыкальный слух, настолько эффективным будет определение аварийной течи. Конечно, разработчики стараются усовершенствовать конструкцию прибора, оснащая его дополнительными звуковыми фильтрами. Но, всё же, его эффективность зависит от оператора.

Принцип работы течеискателей корреляционного типа

Схема работы данного устройства основывается на двух вибродатчиках. Они устанавливаются в зоне доступа, коим может быть подвал, смотровая амера и т.д. Улавливая колебания воды в трубах, они передают данные на регистрирующий блок, который самостоятельно в автоматическом режиме осуществляет обработку полученной информации. При этом происходит фильтрация звуковых сигналов. Это обеспечивает устранение посторонних шумов и выделения наиболее значимых. Затем выполняется анализ информации и пользователь получает точное место, где имеется течь.

Для более детального понимания принципа работы прибора рассмотрим его действие при обнаружении аварийной зоны течи.

Перед нами случай, в котором на трубопровод (обозначим точкой «B») оказывается воздействие импульсного типа (рис.3а). Основной нашей задачей является определение места удара (место импульса). Воздействие на трубу приводит к возникновению эмиссии звуковых сигналов, в том числе и по воде. Именно для фиксации таких сигналов и используются два датчика – А и С, размещённых на концах трубы. Датчик А зафиксирует импульс сигнала через определённый промежуток времени, который рассчитывается по формуле:

t1 = Lд / Vв
где: Vв – скорость распространения звука по воде.
Lд - расстояние от точки удара до датчика «А».
Датчик С зафиксирует импульс сигнала через определённый промежуток времени, который рассчитывается по формуле:

t2 = (L - Lд) / Vв

На основе полученных данных необходимо узнать разность прихода волн. Так как момент начала импульса мы не знаем.

τз = t2 - t1 = (L - 2Lд) / Vв
Из этого, после выполнения умножения на Vв, мы имеем:
Lд = L/2 - Vв* τз/2(1)


Рис. 3 Принцип определения местоположения источника эмиссии.

В результате, для определения течи (в нашем случае эмиссии), нужно по данным о двух сигналах определить разность времени прихода волн (сигналов). Для автоматизации таких расчётов можно применить взаимную корреляцию.

G(τ) = 1/Т*∫ f(t)* g (t- τ) dt
где: G(τ) – значение функции взаимной корреляции;
f(t) – данные по датчику «А»;
g (t) - данные по датчику «С».

Для наглядности практической функции определения взаимной корреляции построим график зависимости G от временного показателя τ (рис.3)

В момент времени τ=0 для момента времени ti берётся произведение значений g и f. Так делается для каждого момента времени. В результате мы имеем:

0*0+0*0+…+(0.2*0+0,5*0+….)+0*0+…+(0*0.2+…)+… = 0

Т.е. на графике G(τ) (рис.3) для τ=0, G(τ)=0.

Затем используем последующее значение τ= τi. Это равносильно временному смещению по одному датчику относительно другого на значение τi. В данном примере значение G(τ) – взаимная корреляция будет равняться нулю до того момента, пока график не станет совмещаться с нижним. Рост значения G(τ) будет до тех пор, пока показание импульса с датчика А не совпадут с импульсом, регистрируемым датчиком С.

Именно этот принцип и заложен в основе действия корреляционных течеискателей, в которых данный расчёт представляется в виде графика. По оси Y показывается взаимная корреляция (её значение), а по X – временная задержка от одного из датчиков, которая преобразована в расстояние. Течь же определяют по наибольшему значению G(τ).


Рис. 4. Стандартные результаты по установлению месторасположения течи (программа Акустическая томография). Течь на отметке 26 м от датчика «А»

Основные показатели прибора:

  • сигналы эмиссии, исходящие от течи;
  • месторасположение течи.

Точное определение места аварии (течи).

Чтобы определить более точно точку дефекта (в нашем случае течи), необходимо рассмотреть формулу (1). Слагаемое, размещённое в справа, содержит расстояние между 2-мя датчиками – L, которое разделено на 2. В результате, если расстояние между используемыми датчиками будет разнится от значения ΔL, то ошибка будет соответствовать ΔL/2.

Определение длины участка

Конечно же, длину можно посмотреть в соответствующей документации на теплотрассу. Но, не редко, данные, которые содержатся в ней, не соответствуют действительности. Поэтому лучше выполнить следующие действия:

  • провести трассировка расположения теплотрассы (для этого нужны специальные устройства);
  • замерить расстояние от одного до другого датчика (лучше использовать мерное колесо, однако при его применении есть вероятность получить неточные результаты из за неровности поверхности, а также проскальзывания. Поэтому лучше всего применять дальномер лазерного типа).

Подводя итог, можно сказать, что при чётком сигнале от течи и правильном измерении расстояния между датчиками ошибиться нельзя. Если же ошибка произошла, то это из-за погрешности в определении расстояния.

Течь и её обнаруживаемость

Для точно определения течи немаловажным является и уровень звукового сигнала, который она передаёт по воде. Согласно исследованиям (Кузнецов Н.С.) установлено, что течь создаёт 3 типа волн. Энергия эмиссии главной волны пропорциональна значению перепада давления, а также площади сечения дефекта в трубопроводе:

W ~ U 8 d 2 ~ ΔP 4 S
где: U – скорость истечения воды;
d и S диаметр и соответствующая площадь отверстия;
ΔP – перепад давления: труба - свободное пространство.

Чем больше отверстие течи, тем более чётким становится сигнал эмиссии. Поэтому, когда размер отверстия достигает определённого значения, появляется возможность фиксации энергии сигнала с помощью корреляционного течеискателя. Также отметим, что важным фактором в обнаружении течи являются технические особенности прибора, а точнее его чувствительность.

Стоит также заметить, что увеличение звукового сигнала течи способствует постепенному снижению давления в трубопроводе. А это приводит к постепенному затуханию самого сигнала.


В результате может произойти затухание сигнала и прибор не сможет его уловить.

Поэтому, при поиске малых течей и больших разрывов трубопроводов с помощью корреляционных течеискателей могут появляться проблемы с фиксацией сигналов.


Течь до снятия теплоизоляции Течь после снятия теплоизоляции

Рис 6. Уменьшение энергии сигнала в результате «стесненного» выхода через слои теплоизоляции.

Рис 7. У струи нет свободного выхода.

Также, эта причина не позволяет прибором определить течь на трубопроводах с изоляцией ППУ (труба в трубе с заполнением межтрубного пространства).

Особенности обнаружения дефектов

Обратимся опять к выражению (1) и рассмотрим сомножитель (Vв), обозначающий показатель скорости распространения звука в водной среде. Он напрямую зависит от диаметра выходного отверстия течи. Чем оно меньше, тем он больше.

В большинстве случаев при возникновении дефекта (течи) канал, в котором располагается трубопровод, затапливается. Это приводит к образованию двух волн: снаружи и внутри трубы. Складываясь в точке регистрации, эти сигналы не позволяют прибору чётко выделить пик на коррелограмме (см. рис.7).

Такие же результаты можно получить и при утончении стенок труб (см. рис. 8а). В таких ситуациях узкополосная фильтрация (рис. 8b) желаемых результатов не даст.

Но, опираясь на практику, можно сказать, что в это и нет необходимости. Так как ремонтировать нужно весь участок с дефектом (на рис. инт. от 50 до 60 м).

Также не редко можно наблюдать и явления резонанса. Когда волны взаимодействуют со стенками труб, создавая дополнительную вибрацию (особенно в случаях утонения труб).

На данном рисунке можно видеть резонанс вторичного типа, который зафиксирован на 79 метрах. В таких случаях, если течь не обнаружена, то в этом месте надлежит провести ремонтные работы. Так как в недалеком будущем здесь может образоваться дефект.

Течеискатель корреляционного типа «Каскад»

Современный рынок предлагает большое количество различных моделей течеискателей, основной функцией которых является поиск мест дефектов трубопроводов. Но, как правило, они выполняют только одну функцию, чего нельзя сказать о таком приборе, как «Каскад». Его возможности позволяют выполнять 2 функции: диагностика состояния трубопроводов и течеискатель корреляционного типа. Прибор также отличается своей чувствительностью, благодаря которой с его помощью можно устанавливать месторасположение течей со скоростью потока от 0,5 м 3 /час.

Ещё одним плюсом прибора является наличие ПО, которое максимально просто в обслуживании и не требует от оператора специальных навыков.