» »

Хим связь определение. Химическая связь

12.03.2022

.

Вам известно, что атомы могут соединяться друг с другом с образованием как простых, так и сложных веществ. При этом образуются различного типа химические связи: ионная, ковалентная (неполярная и полярная), металлическая и водородная. Одно из наиболее существенных свойств атомов элементов, определяющих, какая связь образуется между ними – ионная или ковалентная, - это электроотрицательность, т.е. способность атомов в соединении притягивать к себе электроны.

Условную количественную оценку электроотрицательности дает шкала относительных электроотрицательностей.

В периодах наблюдается общая тенденция роста электроотрица-тельности элементов, а в группах – их падения. Элементы по электроот-рицательностям располагают в ряд, на основании которого можно сравнить электроотрицательности элементов, находящихся в разных периодах.

Тип химической связи зависит от того, насколько велика разность значений электроотрицательностей соединяющихся атомов элементов. Чем больше отличаются по электроотрицательности атомы элементов, образующих связь, тем химическая связь полярнее. Провести резкую границу между типами химических связей нельзя. В большинстве соединений тип химической связи оказывается промежуточным; например, сильнополярная ковалентная химическая связь близка к ионной связи. В зависимости от того, к какому из предельных случаев ближе по своему характеру химическая связь, ее относят либо к ионной, либо к ковалентной полярной связи.

Ионная связь.

Ионная связь образуется при взаимодействии атомов, которые резко отличаются друг от друга по электроотрицательности. Например, типичные металлы литий(Li), натрий(Na), калий(K), кальций (Ca), стронций(Sr), барий(Ba) образуют ионную связь с типичными неметаллами, в основном с галогенами.

Кроме галогенидов щелочных металлов, ионная связь также образуется в таких соединениях, как щелочи и соли. Например, в гидроксиде натрия(NaOH) и сульфате натрия(Na 2 SO 4) ионные связи существуют только между атомами натрия и кислорода (остальные связи – ковалентные полярные).­­­ ­ ­­ ­­ ­

Ковалентная неполярная связь.

При взаимодействии атомов с одинаковой электроотрица-тельностью образуются молекулы с ковалентной неполярной связью. Такая связь существует в молекулах следующих простых веществ: H 2 , F 2 , Cl 2 , O 2 , N 2 . Химические связи в этих газах образованы посредством общих электронных пар, т.е. при перекрывании соответствующих электронных облаков, обусловленном электронно-ядерным взаимодей-ствием, которые осуществляет при сближении атомов.

Составляя электронные формулы веществ, следует помнить, что каждая общая электронная пара – это условное изображение повышенной электронной плотности, возникающей в результате перекрывания соответствующих электронных облаков.

Ковалентная полярная связь.

При взаимодействии атомов, значение электроотрецательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.

К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония и амония.

Металлическая связь.


Связь, которая образуется в результате взаимодействия относите-льно свободных электронов с ионами металлов, называются металлической связью. Этот тип связи характерен для простых веществ- металлов.

Сущность процесса образования металлической связи состоит в следующем: атомы металлов легко отдают валентные электроны и превращаются в положительные заряженные ионы. Относительно свобо-дные электроны, оторвавшиеся от атома, перемещаются между положи-тельными ионами металлов. Между ними возникает металлическая связь, т. е. Электроны как бы цементируют положительные ионы кристал-лической решетки металлов.

Водородная связь.


Связь, которая образуется между атомов водорода одной молекулы и атомом сильно электроотрицательного элемента (O, N, F) другой молекулы, называется водородной связью.

Может возникнуть вопрос: почему именно водород образует такую специфическую химическую связь?

Это объясняется тем, что атомный радиус водорода очень мал. Кроме того, при смещении или полной отдаче своего единственного электрона водород приобретает сравнительно высокий положительный заряд, за счет которого водород одной молекулы взаимодействует с атомами электроотрицательных элементов, имеющих частичный отрицательный заряд, выходящий в состав других молекул (HF, H 2­ O, NH 3).

Рассмотрим некоторые примеры. Обычно мы изображаем состав воды химической формулой H 2 O. Однако это не совсем точно. Правильнее было бы состав воды обозначать формулой (H 2 O)n, где n = 2,3,4 и т. д. Это объясняется тем, что отдельные молекулы воды связаны между собой посредством водородных связей.

Водородную связь принято обозначать точками. Она гораздо более слабая, чем ионная или ковалентная связь, но более сильная, чем обычное межмолекулярное взаимодействие.

Наличие водородных связей объясняет увеличения объема воды при понижении температуры. Это связано с тем, что при понижении температуры происходит укрепление молекул и поэтому уменьшается плотность их «упаковки».

При изучении органической химии возникал и такой вопрос: почему температуры кипения спиртов гораздо выше, чем соответствующих углеводородов? Объясняется это тем, что между молекулами спиртов тоже образуются водородные связи.

Повышение температуры кипения спиртов происходит также всле-дствие укрупнения их молекул.

Водородная связь характерна и для многих других органических соединений (фенолов, карбоновых кислот и др.). Из курсов органической химии и общей биологии вам известно, что наличием водородной связи объясняется вторичная структура белков, строение двойной спирали ДНК, т. е. явление комплиментарности.

Все химические соединения образуются посредством образования химической связи. И в зависимости от типа соединяющихся частиц различают несколько видов. Самые основные – это ковалентная полярная, ковалентная неполярная, металлическая и ионная. Сегодня речь пойдет об ионной.

Что такое ионы

Она образуется между двумя атомами – как правило, при условии, что разница электроотрицательностей между ними очень велика. Электроотрицательность атомов и ионов оценивается по шкале Поллинга.

Поэтому для того чтобы правильно рассматривать характеристики соединений, было введено понятие ионности. Эта характеристика позволяет определить на сколько процентов конкретная связь представляет именно ионную.

Соединение с максимальной ионностью это фторид цезия, в котором она составляет примерно 97%. Ионная связь характерна для веществ, образованных атомами металлов, располагающихся в первой и второй группе таблицы Д.И. Менделеева, и атомами неметаллов, находящихся в шестой и седьмой группах этой же таблицы.

Обратите внимание! Стоит заметить, что не существует соединения, в котором взаимосвязь исключительно ионная. Для открытых на данный момент элементов нельзя добиться настолько большой разницы в электроотрицательности, чтобы получить 100%-ное ионное соединение. Поэтому определение ионной связи не совсем корректно, так как реально рассматриваются соединения с частичным ионным взаимодействием.

Зачем же ввели этот термин, если реально такого явления не существует? Дело в том, что этот подход помог объяснить многие нюансы в свойствах солей, оксидов и других веществ. Например, почему они хорошо растворимы в воде, а их растворы способны проводить электрический ток . Это невозможно объяснить ни с каких других позиций.

Механизм образования

Образование ионной связи возможно только при соблюдении двух условий: если атом металла, участвующий в реакции, способен легко отдать электроны, находящиеся на последнем энергетическом уровне, а атом неметалла способен эти электроны принять. Атомы металлов по своей природе являются восстановителями, то есть способны к отдаче электронов .

Это связано с тем, что на последнем энергетическом уровне в металле могут находится от одного до трех электронов, а радиус самой частицы достаточно большой. Поэтому сила взаимодействия ядра с электронами на последнем уровне настолько мала, что они могут легко уходить с него. С неметаллами ситуация совершенно иная. Они имеют маленький радиус , а количество собственных электронов на последнем уровне может быть от трех и до семи.

И взаимодействие между ними и положительным ядром достаточно сильная, но любой атом стремится к завершению энергетического уровня, поэтому атомы неметалла стремятся получить недостающие электроны.

И когда встречаются два атома – металла и неметалла, происходит переход электронов от атома металла к атому неметалла, при этом образуется химическое взаимодействие.

Схема соединения

На рисунке наглядно видно, как именно осуществляется образование ионной связи. Изначально существуют нейтрально заряженные атомы натрия и хлора.

Первый имеет один электрон на последнем энергетическом уровне, второй семь. Далее происходит переход электрона от натрия к хлору и образование двух ионов. Которые соединяются между собой с образованием вещества. Что такое ион? Ион – это заряженная частица, в которой количество протонов не равно количеству электронов .

Отличия от ковалентного типа

Ионная связь за счет своей специфичности не имеет направленности. Это связано с тем, что электрическое поле иона представляет собой сферу, при том оно убывает или возрастает в одном направлении равномерно, подчиняясь одному и тому же закону.

В отличие от ковалентной, которая образуется за счет перекрывания электронных облаков.

Второе отличие заключается в том, что ковалентная связь насыщенна . Что это значит? Количество электронных облаков, которые могут принимать участие в взаимодействии ограниченно.

А в ионной за счет того, что электрическое поле имеет сферическую форму, оно может соединяться с неограниченным количеством ионов. А значит, можно говорить о том, что она не насыщена.

Также она может характеризоваться еще несколькими свойствами:

  1. Энергия связи – это количественная характеристика, и она зависит от количества энергии, которое необходимо затратить на ее разрыв. Она зависит от двух критериев – длины связи и заряда ионов , участвующих в ее образовании. Связь тем прочнее, чем короче ее длина и больше заряды ионов, ее формирующих.
  2. Длина – этот критерий уже упоминался в предыдущем пункте. Он зависит исключительно от радиуса частиц, участвующих в образовании соединения. Радиус атомов изменяется следующим образом: уменьшается по периоду при увеличении порядкового номера и увеличивается в группе.

Вещества с ионной связью

Она характерна для значительного числа химических соединений. Это большая часть всех солей, в том числе и всем известная поваренная соль. Она встречается во всех соединениях, где есть непосредственный контакт между металлом и неметаллом . Вот некоторые примеры веществ с ионной связью:

  • хлориды натрия и калия,
  • фторид цезия,
  • оксид магния.

Также она может проявляться и в сложных соединениях.

Например, сульфат магния.

Перед вами формула вещества с ионной и ковалентной связью:

Между ионами кислорода и магния будет образовываться ионная связь, а вот сера и соединены между собой уже с помощью ковалентной полярной.

Из чего можно сделать вывод, что ионная связь характерна для сложных химических соединений.

Что такое ионная связь в химии

Виды химической связи — ионная, ковалентная, металлическая

Вывод

Свойства напрямую зависят от устройства кристаллической решетки . Поэтому все соединения с ионной связью хорошо растворимы в воде и других полярных растворителях, проводят и являются диэлектриками. При этом довольно тугоплавки и хрупки. Свойства этих веществ довольно часто применяются в устройстве электрических приборов.

С 2s 2 2p 2 С +1е = С -

О 2s 2 2p 4 О -1е = О +

Возможно иное объяснение образования тройной связи в молекуле СО.

Невозбужденный атом углерода имеет 2 неспаренных электрона, которые могут образовать 2 общие электронные пары с 2-мя неспаренными электронами атома кислорода (по обменному механизму). Однако имеющиеся в атоме кислорода 2 спаренные р -электрона могут образовывать тройную химическую связь, поскольку в атоме углерода имеется одна незаполненная ячейка, которая может принять эту пару электронов.

Тройная связь образуется по донорно-акцепторному механизму, направление стрелки от донора кислорода к акцептору – углероду.

Подобно N 2 - СО обладает высокой энергией диссоциации (1069 кДж), плохо растворим в воде, инертен в химическом отношении. СО – газ без цвета и запаха, безразличный несолеобразующий, не взаимодействует с кислотными щелочами и водой при обычных условиях. Ядовит, т.к. взаимодействует с железом, входящим в состав гемоглобина. При повышении температуры или облучении проявляет свойства восстановителя.



Получение:

в промышленности

CO 2 + C « 2CO

2C + O 2 ® 2CO

в лаборатории: H 2 SO 4, t

HCOOH ® CO­ + H 2 O;

H 2 SO 4 t

H 2 C 2 O 4 ® CO­ + CO 2 ­ + H 2 O.

В реакции СО вступает лишь при высоких температурах.

Молекула СО имеет большое сродство к кислороду, горит образуя СО 2:

СО + 1/2О 2 = СО 2 + 282 кДж/моль.

Из-за большого сродства к кислороду СО используется как восстановитель оксидов многих тяжелых металлов (Fe, Co, Pb и др.).

СO + Cl 2 = COCl 2 (фосген)

CO + NH 3 ® HCN + H 2 O H – C º N

CO + H 2 O « CO 2 + H 2

CO + S ® COS

Наибольший интерес представляют карбонилы металлов (используются для получения чистых металлов). Химическая связь по донорно-акцепторному механизму, имеет место p-перекрывание по дативному механихму.

5CO + Fe ® (пентакарбонил железа)

Все карбонилы – диамагнитные вещества, характеризуются невысокой прочностью, при нагревании карбонилы разлагаются

→ 4CO + Ni (карбонил никеля).

Как и СО карбонилы металлов – токсичны.

Химическая связь в молекуле СО 2

В молекуле СО 2 sp- гибридизация атома углерода. Две sp-гибридные орбитали образуют 2 s-связи с атомами кислорода, а оставшиеся негибридизованными р-орбитали углерода дают с двумя р-орбиталями атомов кислорода p-связи, которые располагаются в плоскостях перпендикулярных друг другу.

О ═ С ═ О

Под давлением 60 атм. и комнатной температуре СО 2 сгущается в бесцветную жидкость. При сильном охлаждении жидкая СО 2 застывает в белую снегоподобную массу, возгоняющуюся при Р = 1 атм и t = 195К(-78°). Спрессованная твердая масса называется сухим льдом, СО 2 не поддерживает горения. В нем горят лишь вещества, у которых сродство к кислороду выше чем у углерода: например,

2Mg + CO 2 ® 2MgO + C.

СО 2 реагирует с NH 3:

CO 2 + 2NH 3 = CO(NH 2) 2 + H 2 O

(карбамид, мочевина)

2СО 2 + 2Na 2 O 2 ® 2Na 2 CO 3 +O 2

Мочевина разлагается водой:

CO(NH 2) 2 + 2H 2 O ® (NH 4) 2 CO 3 → 2NH 3 + СО 2

Целлюлоза – углевод, который состоит из остатков b-глюкозы. Она синтезируется в растениях по следующей схеме

хлорофилл

6CO 2 + 6H 2 O ® C 6 H 12 O 6 + 6O 2 ­фотосинтез глюкозы

СО 2 получают в технике:

2NaHCO 3 ® Na 2 CO 3 + H 2 O + CO 2

из кокса C + O 2 ® CO 2

В лаборатории (в аппарате Киппа):

.

Угольная кислота и ее соли

Растворяясь в воде, углекислый газ частично взаимодействует с ней, образуя угольную кислоту H 2 CO 3 ; при этом устанавливаются равновесия:

К 1 = 4×10 -7 К 2 = 4,8×10 -11 – слабая, неустойчивая, кислородсодержащая, двухосновная кислота. Гидрокарбонаты растворимы в Н 2 О. Карбонаты нерастворимы в воде, кроме карбонатов щелочных металлов, Li 2 CO 3 и (NH 4) 2 CO 3 . Кислые соли угольной кислоты получают, пропуская избыток СО 2 в водный раствор карбоната:

либо постепенным (по каплям) добавлением сильной кислоты в избыток водного раствора карбоната:

Na 2 CO 3 + HNO 3 ® NaHCO 3 + NaNO 3

При взаимодействии со щелочами или нагревании (прокаливании) кислые соли переходят в средние:

Соли гидролизуются по уравнению:

I ступень

Из-за полного гидролиза из водных растворов нельзя выделить карбонаты Gr 3+ , Al 3+ , Ti 4+ , Zr 4+ и др.

Практическое значение имеют соли - Na 2 CO 3 (сода), CaCO 3 (мел, мрамор, известняк), K 2 CO 3 (поташ), NaHCO 3 (питьевая сода), Са(НСО 3) 2 и Mg(HCO 3) 2 обусловливают карбонатную жесткость воды.

Сероуглерод (CS 2)

При нагревании (750-1000°С) углерод реагирует с серой, образуясероуглерод, органический растворитель (бесцветная летучая жидкость, реакционноспособное вещество), огнеопасен и летуч.

Пары CS 2 – ядовиты, применяется для фумигации (окуривания) зернохранилищ против насекомых - вредителей, в ветеринарии служит для лечения аскаридоза лошадей. В технике – растворитель смол, жиров, йода.

С сульфидами металлов CS 2 образует соли тиоугольной кислоты – тиокарбонаты.

Эта реакция аналогична процессу

Тиокарбонаты – желтые кристаллические вещества. При действии на них кислот выделяется свободная тиоугольная кислота.

Она более стабильна чем Н 2 СО 3 и при низкой температуре выделяется из раствора в виде желтой маслянистой жидкости, легко разлагающейся на:

Соединения углерода с азотом (СN) 2 или С 2 N 2 – дициан, легко воспламеняющийся бесцветный газ. Чистый сухой дициан получают путем нагревания сулемы с цианидом ртути (II).

HgCl 2 + Hg(CN) 2 ® Hg 2 Cl 2 + (С N) 2

Другие способы получения:

4HCN г + О 2 2(CN) 2 +2H 2 O

2HCN г + Сl 2 (CN) 2 + 2HCl

Дициан по свойствам похож на галогены в молекулярной форме X 2 . Так в щелочной среде он, подобно галогенам, диспропорционирует:

(С N) 2 + 2NaOH = NaCN + NaOCN

Циановодород - НСN (), ковалентное соединение, газ, растворяющийся в воде с образованием синильной кислоты (бесцветная жидкость и ее соли чрезвычайно ядовиты). Получают:

Циановодород получают в промышленности по каталитическим реакциям.

2CH 4 + 3O 2 + 2NH 3 ® 2HCN + 6H 2 O.

Соли синильной кислоты – цианиды, подвержены сильному гидролизу. CN - - ион изоэлектронный молекуле СО, входит как лиганд в большое число комплексов d-элементов.

Обращение с цианидами требует строгого соблюдения мер предосторожности. В сельском хозяйстве применяют для борьбы с особо опасными насекомыми – вредителями.

Цианиды получают:

Соединения углерода с отрицательной степенью окисления :

1) ковалентные (SiC карборунд) ;

2) ионноковалентные;

3) металлические карбиды.

Ионноковалентные разлагаются водой с выделением газа, в зависимости от того какой выделяется газ, их делят на:

метаниды (выделяется СН 4)

Al 4 C 3 + 12H 2 O ® 4Al(OH) 3 + 3CH 4

ацетилениды (выделяется С 2 Н 2)

H 2 C 2 + AgNO 3 ® Ag 2 C 2 + HNO 3

Металлические карбиды – соединения стехиометрического состава образованные элементами 4, 7, 8 групп посредством внедрения атомов Ме в кристаллическую решетку углерода.

Химия кремния

Отличие химии кремния от углерода обусловлено большими размерами его атома и возможностью использования 3d-орбиталей. Из-за этого связи Si – O - Si, Si - F более прочны, чем у углерода.

Для кремния известны оксиды состава SiO и SiO 2 .Монооксид кремния существует только в газовой фазе при высоких температурах в инертной атмосфере; он легко окисляется кислородом с образованием более стабильного оксида SiO 2 .

2SiO + О 2 t ® 2SiO 2

SiO 2 – кремнезем, имеет несколько кристаллических модификаций. Низкотемпературная – кварц, обладает пьезоэлектрическими свойствами. Природные разновидности кварца: горный хрусталь, топаз, аметист. Разновидности кремнезема – халцедон, опал, агат, песок.

Известно большое разнообразие силикатов (точнее оксосиликатов). В строении их общая закономерность: все состоят из тетраэдров SiO 4 4- которые через атом кислорода соединены друг с другом.

Сочетания тетраэдров могут соединяться в цепочки, ленты, сетки и каркасы.

Важные природные силикаты 3MgO×H 2 O×4SiO 2 тальк, 3MgO×2H 2 O×2SiO 2 асбест.

Как и для SiO 2 для силикатов характерно (аморфное) стеклообразное состояние. При управляемой кристаллизации можно получить мелкокристаллическое состояние – ситаллы – материалы повышенной прочности. В природе распространены алюмосиликаты – каркасные ортосиликаты, часть атомов Si заменены на Al, например Na 12 [(Si,Al)O 4 ] 12 .

Наиболее прочный галогенид SiF 4 разлагается только под действием электрического разряда.

Гексафторокремниевая кислота (по силе близка к H 2 SO 4).

(SiS 2) n – полимерное вещество, разлагается водой:

Кремниевые кислоты.

Соответствующие SiO 2 кремниевые кислоты не имеют определенного состава, обычно их записывают в виде xH 2 O ySiO 2 – полимерные соединения

Известны:

H 2 SiO 3 (H 2 O×SiO 2) – метакремниевая (не существует реально)

H 4 SiO 4 (2H 2 O×SiO 2) – ортокремниевая (простейшая реально существующая только в растворе)

H 2 Si 2 O 5 (H 2 O×2SiO 2) – диметакремниевая.

Кремниевые кислоты – плохо растворимые вещества, для H 4 SiO 4 характерно коллоидное состояние, как кислота слабее угольной (Si менее металличен, чем С).

В водных растворах идет конденсация ортокремневой кислоты, в результате образуются поликремниевые кислоты.

Силикаты – соли кремневых кислот, в воде нерастворимы, кроме силикатов щелочных металлов.

Растворимые силикаты гидролизуются по уравнению

Желеобразные растворы натриевых солей поликремневых кислот называются «жидким стеклом». Широко применяются как силикатный клей и в качестве консерванта древесины.

Сплавлением Na 2 CO 3 , CaCO 3 и SiO 2 получают стекло, которое является переохлажденным взаимным раствором солей поликремниевых кислот.

6SiO 2 + Na 2 CO 3 + CaCO 3 ® Na 2 O × CaO × 6SiO 2 + 2CO 2 Силикат записан как смешанный оксид.

Силикаты больше всего используются в строительстве. 1 место в мире по выпуску силикатной продукции – цемент, 2-е – кирпич, 3 – стекло.

Строительная керамика – облицовочная плитка, керамические трубы. Для изготовления санитарно-технических изделий – стекло, фарфор, фаянс, глиняная керамика.

Известно, что электронные оболочки, содержащие восемь внешних электронов, два из которых находятся на s- орбитали, а шесть - на р -орбиталях, обладают повышенной устойчивостью. Они соответствуют инертным газам: неону, аргону, криптону, ксенону, радону (найдите их в периодической таблице). Еще более устойчив атом гелия, содержащий всего два электрона. Атомы всех других элементов стремятся приблизить свою электронную конфигурацию к электронной конфигурации ближайшего инертного газа. Это возможно сделать двумя путями - отдавая или присоединяя электроны внешнего уровня.

    Атому натрия, имеющему всего один неспаренный электрон, выгоднее его отдать, тем самым атом получает заряд (становится ионом) и приобретает электронную конфигурацию инертного газа неона.

    Атому хлора до конфигурации ближайшего инертного газа недостает всего одного электрона, поэтому он стремится приобрести электрон.

Каждый элемент в большей или меньшей степени обладает способностью притягивать электроны, которая численно характеризуется значением электроотрицательности . Соответственно, чем больше электроотрицательность элемента, тем сильнее он притягивает электроны и тем сильнее выражены его окислительные свойства.

Стремление атомов приобрести устойчивую электронную оболочку объясняет причину образования молекул.

Определение

Химическая связь - это взаимодействие атомов, обусловливающее устойчивость химической молекулы или кристалла как целого.

ТИПЫ химической связи

Различают 4 основных типа химической связи:

Рассмотрим взаимодействие двух атомов с одинаковыми значениями электроотрицательности, например двух атомов хлора. Каждый из них имеет по семь валентных электронов. До электронной конфигурации ближайшего инертного газа им не хватает по одному электрону.

Сближение двух атомов до определенного расстояния приводит к образованию общей электронной пары, одновременно принадлежащей обоим атомам. Эта общая пара и представляет собой химическую связь. Аналогично происходит и в случае молекулы водорода. У водорода всего один неспаренный электрон, и до конфигурации ближайшего инертного газа (гелия) ему не хватает еще одного электрона. Таким образом, два атома водорода при сближении образуют одну общую электронную пару.

Определение

Связь между атомами неметаллов, возникающая при взаимодействии электронов с образованием общих электронных пар, называется ковалентной.

В случае если взаимодействующие атомы имеют равные значения электроотрицательности, общая электронная пара в равной степени принадлежит обоим атомам, то есть находится на равном расстоянии от обоих атомов. Такая ковалентная связь называется неполярной .

Определение

Ковалентная неполярная связь - химическая связь между атомами неметаллов с равными или близкими значениями электроотрицательности. При этом общая электронная пара одинаково принадлежит обоим атомам, смещения электронной плотности не наблюдается.

Ковалентная неполярная связь имеет место в простых веществах-неметаллах: $\mathrm{О}_2, \mathrm{N}_2, \mathrm{Cl}_2, \mathrm{P}_4, \mathrm{O}_3$. При взаимодействии атомов, имеющих различные значения электроотрицательности, например водорода и хлора, общая электронная пара оказывается смещенной в сторону атома с большей электроотрицательностью, то есть в сторону хлора. Атом хлора приобретает частичный отрицательный заряд, а атом водорода - частичный положительный. Это пример ковалентной полярной связи.

Определение

Связь, образованная элементами-неметаллами с разной электроотрицательностью, называется ковалентной полярной. При этом происходит смещение электронной плотности в сторону более электроотрицательного элемента.

Молекула, в которой разделены центры положительного и отрицательного зарядов, называется диполем . Полярная связь имеет место между атомами с различной, но не сильно различающейся электроотрицательностью, например между различными неметаллами. Примерами соединений с полярными ковалентными связями являются соединения неметаллов друг с другом, а также различные ионы, содержащие атомы неметаллов $(\mathrm{NO}_3–, \mathrm{CH}_3\mathrm{COO}–)$. Особенно много ковалентных полярных соединений среди органических веществ.

В случае если разница электроотрицательностей элементов будет велика, произойдет не просто смещение электронной плотности, а полная передача электрона от одного атома к другому. Рассмотрим это на примере фторида натрия NaF. Как мы видели ранее, атом натрия стремится отдать один электрон, а атом фтора готов его принять. Это легко осуществляется при их взаимодействии, которое сопровождается переходом электрона.

При этом атом натрия полностью передает свой электрон атому фтору: натрий лишается электрона и становится заряженным положительно, а хлор приобретает электрон и становится заряженным отрицательно.

Определение

Атомы и группы атомов, несущие на себе заряд, называют ионами.

В образовавшейся молекуле - хлориде натрия $Na^+F^-$ - связь осуществляется за счет электростатического притяжения разноименно заряженных ионов. Такую связь называют ионной . Она реализуется между типичными металлами и неметаллами, то есть между атомами с сильно различающимися значениями электроотрицательности.

Определение

Ионная связь образована за счет сил электростатистического притяжения между разноименно заряженными ионами - катионами и анионами.

Существует еще один тип связи - металлическая , характерная для простых веществ - металлов. Она характеризуется притяжением частично ионизованных атомов металлов и валентных электронов, образующих единое электронное облако («электронный газ»). Валентные электроны в металлах являются делокализованными и принадлежат одновременно всем атомам металла, свободно перемещаясь по всему кристаллу. Таким образом, связь является многоцентровой. В переходных металлах металлическая связь носит частично ковалентный характер, так как дополнена перекрыванием частично заполненных электронами d-орбиталей предвнешнего слоя. Металлы образуют металлические кристаллические решетки. О ней подробно рассказывается в теме «Металлическая связь и ее характеристики».

межмолекулярные взаимодействия

Примером сильного межмолекулярного взаимодействия

является водоро дная связь, образующаяся между атомом водорода одной молекулы и атомом с высокой электроотрицательностью ($\mathrm{F}$, $\mathrm{O}$, $\mathrm{N}$). Примером водородной связи является взаимодействие молекул воды $\mathrm{O}_2\mathrm{O}…\mathrm{OH}_2$, молекул аммиака и воды $\mathrm{H}_3\mathrm{N}…\mathrm{OH}_2$, метанола и воды $\mathrm{CH}_3\mathrm{OH}…\mathrm{OH}_2$ , а также различных частей молекул белков, полисахаридов, нуклеиновых кислот.

Другим примером межмолекулярного взаимодействия являются ван-дер-ваальсовы силы , которые возникают при поляризации молекул и образовании диполей. Они обусловливают связь между слоями атомов в слоистых кристаллах (таких как структура графита).

Характеристики химической связи

Химическая связь характеризуется длиной, энергией, направленностью и насыщаемостью (каждый атом способен образовать ограниченное число связей). Кратность связи равна числу общих электронных пар. Форма молекул определяется типом электронных облаков, участвующих в образовании связи, а также фактом наличия или отсутствия неподеленных электронных пар. Так, например, молекула $\mathrm{CO}_2$ является линейной (нет неподеленных электронных пар), а $\mathrm{H}_2\mathrm{O}$ и $\mathrm{SO}_2$ – уголковыми (есть неподеленные пары). В случае если взаимодействующие атомы имеют сильно различающиеся значения электроотрицательностей, общая электронная пара практически полностью смещается в сторону атомов с наибольшей электроотрицательностью. Ионную связь, таким образом, можно рассматривать как предельный случай полярной ковалентной связи, когда электрон практически полностью перешел от одного атома к другому. В действительности полного смещения не происходит никогда, то есть абсолютно ионных веществ нет. Например, в $\mathrm{NaCl}$ реальные заряды на атомах составляют +0,92 и –0,92, а не +1 и –1.

Ионная связь реализуется в соединениях типичных металлов с неметаллами и кислотными остатками, а именно в оксидах металлов ($\mathrm{CaO}$, $\mathrm{Al}_2\mathrm{O}_3$), щелочах ($\mathrm{NaOH}$, $\mathrm{Ca(OH)}_2$) и солях ($\mathrm{NaCl}$, $\mathrm{K}_2\mathrm{S}$, $\mathrm{K}_2\mathrm{SO}_4$, $\mathrm{NH}_4\mathrm{Cl}$, $\mathrm{CH}_3\mathrm{NH}_3^+$, $\mathrm{Cl^–}$).

механизмы образования химической связи

Кристаллы.

Различают четыре типа химических связей: ионную, ковалентную, металлическую и водородную.

Ионная химическая связь

Ионная химическая связь - это связь, образовавшаяся за счет электростатического притяжения катионов к анионам.

Как вы знаете, наиболее устойчивой является такая электронная конфигурация атомов, при которой на внешнем электронном уровне, подобно атомам благородных газов, будет находиться 8 электронов (или для первого энергетического уровня - 2). При химических взаимодействиях атомы стремятся приобрести именно такую устойчивую электронную конфигурацию и часто достигают этого или в результате присоединения валентных электронов от других атомов (процесса восстановления), или в результате отдачи своих валентных электронов (процесса окисления). Атомы, присоединившие «чужие» электроны, превращаются в отрицательные ионы, или анионы. Атомы, отдавшие свои электроны, превращаются в положительные ионы, или катионы. Понятно, что между анионами и катионами возникают силы электростатического притяжения, которые и будут удерживать их друг около друга, осуществляя тем самым ионную химическую связь.

Так как катионы образуют в основном атомы металлов, а анионы - атомы неметаллов, логично сделать вывод, что этот тип связи характерен для соединений типичных металлов (элементы главных подгрупп I и II групп, кроме магния и бериллия Ве) с типичными неметаллами (элементы главной подгруппы VII группы). Классическим примером является образование галогенидов щелочных металлов (фторидов, хлоридов и др.). Например, рассмотрим схему образования ионной связи в хлориде натрия:

Два разноименно заряженных иона, связанные силами притяжения, не теряют способности взаимодействовать с противоположно заряженными ионами, вследствие чего образуются соединения с ионной кристаллической решеткой. Ионные соединения представляют собой твердые, прочные, тугоплавкие вещества с высокой температурой плавления.

Растворы и расплавы большинства ионных соединений - электролиты. Такой тип связи характерен для гидроксидов типичных металлов и многих солей кислородсодержащих кислот . Однако при образовании ионной связи не происходит идеального (полного) перехода электронов. Ионная связь является крайним случаем ковалентной полярной связи.

В ионном соединении ионы представлены как бы в виде электрических зарядов со сферической симметрией электрического поля, одинаково убывающего с увеличением расстояния от Центра заряда (иона) в любом направлении. Поэтому взаимодействие ионов не зависит от направления, то есть ионная связь, в отличие от ковалентной, будет ненаправленной.

Ионная связь существует также в солях аммония, где нет атомов металлов (их роль играет катион аммония).

Ковалентная химическая связь

Популярное